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Chapter 1

Introduction

The Bayesian method in model selection and inference is comparatively a recent
field of research. Although Bayesian analysis has been used extensively in research
work from Laplace’s time, use of the Bayes’ theorem in model selection is rather a
new domain worth exploring. The application of it can also be far reached.

The first problem in Bayesian model class selection is to identify the parameters
of a particular model class. A lot of articles has been dedicated to this purpose [31].
However, a number of articles addressing the second problem of order-ranking the
models using Bayes’ theorem with identified parameters is much less. At one point
in time, in fact, Sir Ronald A. Fisher 1 believed that the model specification is out
of the scope of mathematical statistics. The situation got changed when Akaike in
1973 derived his Akakaike’s Information criterion (AIC) and with some modification
AICc. Then came the Swartz criterion or Bayesian Information Criterion (BIC).
These criteria are based on maximum likelihood theory and information theory.
Even in the field of molecular biology software (e.g. Modelgenerator etc.) has been
developed based on these criteria. However, the application was limited to mainly in
the in the field of ecology and evolution [15]. The application of these criteria to other
engineering application is however quite limited. Literature for model selection based
on these criteria or information theory is limited to statistics and biology journals
[9, 14, 15, 17, 29]. From 2004 Prof. Beck with his few students has been working
on Bayesian model class selection [4, 5, 8, 20, 30, 31] with applications to structural
engineering problems. A scope of extending the Bayesian model class selection
problem is through model averaging. In statistics, Bayesian model averaging concept
has been developed in late 90’s and it is expanded in the paper ‘Bayesian Model
Averaging : A Tutorial’ by Hoeting et al [13]. This primer discusses the theoretical
foundation of Bayesian model selection and the challenges in applying this tool to
practical problems.

1Maximum Likelihood Theory has been developed by Sir R. A. Fisher [1890-1962].
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Chapter 2

Bayesian Inference

2.1 Introduction

Bayes’ theorem has been developed by the British mathematician Thomas Bayes
[1702-1761] in his well known paper ‘An essay towards solving a problem in the
doctrine of chances’ [3]. In this chapter a short introduction of the application of
this theorem in model class selection problem is presented.

2.2 Bayes’ Theorem

2.2.1 Bayes’ Theorem for Discrete Events

Let us assume A and B denote two events. Then using Bayes’ theorem

P (A|B) =
P (B|A)P (A)

P (B)
if P (B) > 0 (2.1)

If the event A is partitioned into N mutually exclusive events, A1, A2, ...., AN

P (Ai|B) =
P (B|Ai)P (Ai)∑N
i=1 P (B|Ai)P (Ai)

for i = 1, 2, ...., N (2.2)

2.2.2 Bayes’ Theorem for Discrete Events with Continuous-valued
Parameters

If we take the event B as B ∈ (b, b+ db), we can use Equation (2.1) and write

P [A|B ∈ (b, b+ db)] =
P [B ∈ (b, b+ db)|A]P (A)

P [B ∈ (b, b+ db)]

=
p(b|A)db.P (A)

p(b)db

(2.3)

∴ P (A|b) =
p(b|A)P (A)

p(b)
(2.4)
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CHAPTER 2. BAYESIAN INFERENCE 4

2.2.3 Bayes’ Theorem for Continuous-valued Parameters

Similarly, as before for continuous valued parameters with A ∈ (a, a + da) we
can write

p(a|b) =
p(b|a)p(a)

p(b)
(2.5)

2.3 Bayesian Inference

Bayes’ Theorem offers the possibility for inferencing uncertain models/systems
from their measurements. Let us assume M1,M2, ....,MNm are the Nm numbers of
different model classes for a physical system. Let the uncertain parameter vector
for each model class be θj , j = 1, 2, ...., Nm where the dimensions of each θj vector
are s1 × 1, s2 × 1, ...., sNm × 1, respectively. Let D be the measurement data of the
system.

2.3.1 Problem-1: Parametric Identification

In this level of inference, a class of mathematical model Mj is given for a par-
ticular physical phenomenon or system and we are asked to identify the unknown
parameters θj .
From the Bayes’ Theorem (2.5),

p(θj |D,Mi) =
p(D|θj ,Mj)p(θj |Mj)

p(D|Mj)
; j = 1, 2, ...., Nm

= k0p(D|θj ,Mj)p(θj |Mj)

(2.6)

where k0 = 1
p(D|Mj) .

Here, p(θj |D,Mj) is the posterior distribution of the parameters, p(D|θj ,Mj) is
known as ‘likelihood’, p(θj |Mj) is known as ‘prior’ and p(D|Mj) is known as ‘evi-
dence’. However, to get the posterior using MCMC (Markov Chain Monte Carlo)
method we do not need to evaluate the evidence.

2.3.2 Markov Chain Monte Carlo[22, 27]

Markov chain Monte Carlo (MCMC), is a general computational approach that
replaces analytic integration by summation over samples generated from iterative
algorithms. Problems that are intractable using analytic approaches often become
possible to solve using some form of MCMC, even with high-dimensional problems.

The goal of MCMC is to design a Markov chain such that the stationary distri-
bution of the chain is exactly the distribution that we are interesting in sampling
from. This is called the target distribution. There are a number of methods that
achieve this goal using relatively simple procedures. I have used Metropolis-Hastings
sampling in the current research work.
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Metropolis-Hastings Algorithm[21, 27]

Let us assume our goal is to sample from the target density p(θ), then Metropolis
sampler creates a Markov chain where θ(t) represents the state of a Markov chain
at iteration t.

Algorithm 1 Metropolis-Hastings Sampling Algorithm

Set t = 1.
Generate a initial value u, and set θ(t) = u.
while t ≤ T do

t = t+ 1
Generate a proposal from q(θ|θ(t−1))

Evaluate the acceptance probability α = min
(

1, p(θ∗)

p(θ(t−1))

q(θ(t−1)|θ∗)

q(θ∗|θ(t−1))

)
.

Generate a u from a Uniform(0, 1) distribution.
if u < α then

accept the proposal and set θ(t) = θ∗

else
set θ(t) = θ(t−1).

end if
end while

When the proposal distribution q(θ) is symmetric then the above algorithm
becomes Metropolis sampler.

2.3.3 Problem-2: Model Class Selection

The probability of a class of models conditioned on the data set D,

P (Mj |D) =
p(D|Mj)P (Mj)

p(D)
, j = 1, 2, ...., Nm. (2.7)

where, the denominator p(D) =
∑Nm

j=1 p(D|Mj)P (Mj) and P (Mj) is a priori measure

of plausibility assigned by user such that
∑Nm

j=1 P (Mj) = 1. However, specification of
P (Mi), the prior distribution over competing models is challenging. The algorithm
for Bayesian model class selection problems is as follows

Algorithm 2 Bayesian Model Class Selection Algorithm

Collect measurement data D
for i = 1, ...., Nm do

Estimate p(D|Mi).
end for
for i = 1, ...., Nm do

Calculate P (Mi|D) = p(D|Mi)P (Mi)∑Nm
i=1 p(D|Mi)P (Mi)

.

end for
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2.4 Occam’s Razor

“It is vain to do with more what can be done with fewer” - William of
Occam (or Ockham in english)

It is obvious that a more complicated model will fit the data better than a less com-
plicated one with fewer adjustable parameters. This approach is likely to over-fitted
model classes. Over-fitted models perform poorly for future predictions. Therefore,
it is necessary to penalize more complicated models.

2.4.1 Occams Razor in Bayesian inference [17]

In Bayesian Model Class Selection, the evidence for each model class provided
by data automatically enforces a penalty for complicated models. The evidence

p(D|Mi) =

∫
Θ
p(D|θi,Mi)p(θi|Mi)dθ

For many problems the posterior distribution p(θ|D,Mi) ∝ p(D|θi,Mi)p(θi|Mi) will
have a strong peak at the most probable parameters. Then the evidence can be
approximated by the height of the peak multiplied by the width ∆θ.

p(D|Mi) ' p(D|θMP ,Mi)p(θMP |Mi)∆θ

Evidence ' Best fit likelihood × Occam factor
(2.8)

The quantity ∆θ is the posterior uncertainty in θ. For simplicity let us assume the
prior p(θ|Mi) is uniform on some large interval ∆0θ, representing the range of values
of θ that Mi thought possible before the data arrived. Then,

p(θMP |Mi) =
1

∆0θ
(2.9)

and Occam factor =
∆θ

∆0θ
(2.10)

Hence, the occam factor is the ratio of the posterior accessible volume of Mi’s pa-
rameter space to the prior accessible volume. Typically, a complicated model with
many parameters each of which is free to vary over a large range ∆0θ will be penal-
ized by a larger Occam factor than a simpler one. Also, the Occam factor provides
a penalty for overfiiting of data by the term in the numerator, namely ∆θ. 1

1Occam factor in Bayesian inference for several parameters has been thoroughly discussed in
MacKay (1992)[17] and in Beck & Yuen (2004)[5]. From logarithm of evidence it can also be shown
that Occam’s razor principle is present inside the calculation of evidence[20].
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2.5 Predictive Analysis using Model Classes (Model Av-
eraging)

2.5.1 Bayesian Model Averaging (BMA)

Let M = (M1, ....,MNm) be the set of models under consideration. If ∆ is the
quantity of interest, then the posterior distribution of ∆ given data D is[13],

p(∆|D) =

Nm∑
i=1

p(∆|D,Mi)P (Mi|D) (2.11)

Parameter estimates and other quantities of interest can be estimated by the prin-
ciple described above. For example, the BMA estimate of a common parameter θ
is,

θ̂BMA =

Nm∑
i=1

θ̂iP (Mi|D) (2.12)

Many system performance measures can be expressed as the expectation of some
function g(X) with respect to the posterior pdf.

〈g(X)|D,Mi〉 =

∫
g(x)p(x|D,Mi)dx (2.13)

Using the BMA concept,

〈g(X|D)〉BMA =

Nm∑
i=1

〈g(X|D,Mi)〉P (Mi|D) (2.14)

When g(X) = 1F (X) which is equal to 1 if X ∈ F and 0 otherwise, where F is the
region in the response space that corresponds to unsatisfactory system performance,
then it gives posterior failure probability P (F |D).

2.5.2 Implementing Bayesian Model Averaging

The first question to answer while doing model averaging is which model classes
should we consider? Unfortunately there is no certain answer. But a guideline can
be set, such as follows [13],

The model classes not belonging to

A =

{
Mk :

maxl{P (Ml|D)}
P (Mk|D)

≤ C
}

(2.15)

should be excluded from Equation (2.11).
Hence, we can replace Equation (2.11) by,

p(∆|D) =
∑
Mi∈A

p(∆|D,Mi)P (Mi|D) (2.16)
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2.5.3 Predictive Performance

The purpose of order ranking models is also to make forcasts. In the examples
the data is split into two portions, DI and DII . DI is used to get the order of merit
of each model, i.e. P (Mi|DI) and performance is then measured on the second
half of the data, DII . The predictive ability is measured by the following formula
(Logarithmic scoring rule) [13],

performancei =
∑
d∈DII

log p(d|Mi, D
I) (2.17)

and the predictive performance of BMA is measured as,

performance =
∑
d∈DII

log

 ∑
Mi∈A

p(d|Mi, D
I)P (M |DI)

 (2.18)

The smaller the predictive log score for a given model or model average is, the better
the predictive performance will be.

2.6 Comparison with Bayes Factor

Bayes factor is also used to compare competing models. Bayes factor is given by,

K =
Zi
Zj

=
p(D|Mi)

p(D|Mj)
=

∫
Θ p(D|θi,Mi)p(θi|Mi)dθ∫
Θ p(D|θj ,Mj)p(θj |Mj)dθ

(2.19)

If K > 1 then the model Mi will be favoured. However, from the above relation it
is clear that the using Bayes factor is same as using Bayesian model class selection
approach with equal prior. Famous mathematician Sir Harold Jeffreys provided a
table to interpret K and compare models [Table 2.1].

Zj/Zi log2(Zj/Zi) loge(Zj/Zi) log10(Zj/Zi) Evidence against model Mi

1− 3.2 0− 1.7 0− 1.2 0− 0.5 Weak

3.2− 10 1.7− 3.3 1.2− 2.3 0.5− 1 Substantial

10− 100 3.3− 6.6 2.3− 4.6 1− 2 Strong

> 100 > 6.6 > 4.6 > 2 Decisive

> 1000 > 10 > 7 > 3 Beyond reasonable doubt

Table 2.1: Jeffrey’s scale[19].



Chapter 3

Different Methods for
Evaluating the ‘Evidence’

3.1 Introduction

The main challenge in Bayesian Model Class Selection problems lies in evaluating
the evidence i.e. p(D|Mk). For a particular model class, Mk, the evidence can be
written as,

Z(k) =

∫
Θ
p(D|θ,Mk)p(θ|Mk)dθ =

∫
Θ
L(θ,Mk)p(θ|Mk)dθ (3.1)

where, L(θ,Mk) is the likelihood function and p(θ|Mk) is the prior distribution.

For the past few decades many authors have proposed different methods. Among
them few methods applicable to structural problems are discussed here.

3.2 Laplace’s Method

If p(θ|D,Mk) can be approximated closely by a Gaussian then we can use
‘Laplace’s method’ [?].

Z(k) ≈ (2π)r/2|Σ|−1/2p(D|θ̃,Mk)p(θ̃|Mk) (3.2)

where Σ = −(∇∇ log p(D|θ̂,Mk)), r is the dimension of θ vector for Mk model and
θ̂ is the most probable value of θ i.e. which maximizes p(D|θ,Mk).

3.3 Arithmetic Mean Estimator

We can sample θi from pdf p(θ) where, i = 1 to N and N can be taken suitably
large. Then we can approximate the integral by Monte-Carlo approximation,

Z(k) =

∫
Θ
L(θ,Mk)p(θ|Mk)dθ ≈

1

Ns

Ns∑
i=1

L(θi,Mk) (3.3)

9
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However, in these method if N is not large enough and likelihood is highly peaked
then most of the samples we take are from low likelihood region and give a bad
estimate.

3.4 Harmonic Mean Estimator [?]

Newton and Raftery in their 1994 paper proposed one method to calculate ‘Ev-
idence’. In this method,

Z(k) =

∫
Θ
L(θ,Mk)p(θ|Mk)dθ ≈

1(
1
Ns

∑Ns
i=1 L(θi,Mk)

) (3.4)

where, θi ∼ p(θ|D,Mk). When Ns is large enough then from law of large numbers
the above result can be shown.
However, as we take θi from posterior distribution in this method the dependence of
Z(k) on prior distribution is not present in here. For two totally different priors which
encompass the posterior region and informative data we will get same result which
will not show ‘Occam’s razor’ effect. Another problem with this method is that we
have to take a very large number of θi to get the correct estimate of ‘evidence’.

3.5 Annealed Sampling Method [?]

R. M. Neal in 2001 proposed Annealed Sampling method which can also be used
to calculate normalizing constants. The calculation of evidence by this method is
nothing but an implementation of Thermodynamic Integration[?]. In this method
we have to sample {θ}Ns

i=1 for model Mk from the following density,

p(θ|D,Mk, γ) = p̂(θ|D,Mk)
γp(θ|Mk)

(1−γ) (3.5)

where, γ ∈ [0, 1].
To evaluate evidence let us denote p(θ|D,Mk) = p̂(θ|D,Mk)/Z(k) i.e. p̂(θ|D,Mk) =
p(D|θ,Mk)p(θ|Mk) = L(θ,Mk)p(θ|Mk) (i.e. p̂ is not normalized). Now let us vary
γ from 0 to 1 e.g. 0 = γ0 < γ1 < .... < γNt−1 < γNt = 1. When j = 0, pj becomes
prior distribution and when j = Nt, pj becomes posterior distribution. At the first
step we generate θ0 from prior distribution p0. Then using the idea of importance
sampling we can generate sample from pj+1 by taking θj generated from pj at the
previous step via Metropolis-Hastings or Gibbs sampling algorithm. At the end of
Ntth step we get posterior samples of θ (as θi, i = 1 to Ns) from p(θ|D,Mk). From

this calculation as a byproduct we can get the importance weights(w
(j)
i ) at each step

and using those weights,

Wi =

Nt∏
j=1

w
(j)
i =

Nt∏
j=1

p(θj |D,Mk, γj)

p(θj−1|D,Mk, γj−1)
(3.6)
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Clearly, ∑Ns
i=1Wi

Ns
≈
Z(k)
Ns

Z(k)
0

=

∫
Θ pNs(θ|D,Mk)dθ∫
Θ p0(θ|D,Mk)dθ

=

∫
Θ
p̂(θ|D)dθ

=

∫
Θ
L(θ,Mk)p(θ|Mk)dθ

(3.7)

[∵ pNs(θ|D,Mk) = p̂(θ|D,Mk) and
∫

Θ p0(θ|Mk)dθ = 1].
Therefore, in this method evidence is calculated as,

Z(k) =

∑Ns
i=1Wi

Ns
(3.8)

3.6 Power Posterior Method [?]

Nial Friel and Pettitt defined ‘power posterior’ as,

p(θ|D,Mk,Γ(γ)) ∝ p(D|θ,Mk)
Γ(γ)p(θ|Mk) (3.9)

where, Γ(γ) : [0, 1]→ [0, 1]. For simplicity we can take simply Γ(γ) = γ.
This method is also related to Thermodynamic Integration principles or path sam-
pling. In this method we take samples from the power posterior for different values
of γ (e.g. 0 = γ0 < γ1 < .... < γNt−1 < γNt = 1).
The normalizing constants for power posterior will be,

p(D|Mk, γ) =

∫
Θ
p(D|θ,Mk)

Γ(γ)p(θ|Mk)dθ (3.10)

Following the identity proved in [?, ?] we can write,

log(Z(k)) = log {p(D|Mk)}

= log

{
p(D|Mk, γ = 1)

p(D|Mk, γ = 0)

}
=

∫ 1

0
Eθ|γ [log {p(D|θ,Mk)}]dγ

=

∫ 1

0
z(γ)dγ

(3.11)

where, z(γ) = Eθ|γ [log {p(D|θ,Mk)}].
The expectation is taken with respect to p(θ|D,Mk,Γ(γ)). To evaluate this inte-
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gration we can use standard quadrature rules e.g. using ‘Trapezoidal rule’ we get,

log(Z(k)) =

∫ 1

0
Eθ|γ [log {p(D|θ,Mk)}]dγ

≈ 1

2

Nt−1∑
j=1

(γj+1 − γj)[z(γj+1) + z(γj)]

(3.12)

3.7 Nested Sampling Method

John Skilling in 2004-2006 proposed a means of estimating the integral that tries
to sample from high likelihood region. This technique is “nested sampling”. In
nested sampling method we use the following result,

Problem 1. Let X be a non-negative random variable, that is, P [X < 0] = 0. Then
the shaded area in the figure is equal to the expected value of X .

Proof. [18]

E[X] =

∫ ∞
0

xpX(x)dx

=

∫ ∞
0

xP ′X(x)dx

= −
∫ ∞

0
x[1− PX(x)]′dx

= −{x[1− PX(x)]}∞0 +

∫ ∞
0

[1− PX(x)]dx

Now, lim
x→0

x[1− PX(x)] −→ 0 [∵ PX(0) = 0]∫ ∞
0

xpX(x)dx <∞⇒ lim
k→∞

∫ ∞
k

xpX(x)dx→ 0,

and, since k

∫ ∞
k

pX(x)dx ≤
∫ ∞
k

xpX(x)dx,

lim
k→∞

k[1− PX(k)] −→ 0

⇒ E[X] =

∫ ∞
0

[1− PX(x)]dx

(3.13)

3.7.1 Distribution of Likelihood Function

We can define the distribution of likelihood function as,

PL(λ) = P [L(θ) < λ] =

∫
L(θ)<λ

p(θ)dθ (3.14)
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∫
Θ
L(θ)p(θ)dθ = Eθ[L(θ)] =

∫ ∞
0

[1− PL(λ)]dλ

=

∫ ∞
0

X(λ)dλ

(3.15)

Now, taking

X(λ) = s;λ = X−1(s) (3.16)

.
Therefore, ∫

Θ
L(θ)p(θ)dθ =

∫ ∞
0

X(λ)dλ =

∫ 1

0
X−1(s)ds (3.17)

3.7.2 Calculation of Evidence

The integral we need to evaluate can be approximated as a weighted sum using
some quadrature rules.

Z =

∫ 1

0
X−1(s)ds ∼=

∑
i

Liωi (3.18)

To start, i is set as zero and N number of samples are taken from prior (i.e. s0 =
1) and L are evaluated for all N samples. The samples are sorted according to their
values of likelihoodL. Then the sample with lowest likelihood L0 is replaced with a
new sample which gives L > L0. The corresponding prior-volume subjected to the
constrained L > L0. This is equivalent to taking sample from prior volume which can
be given by the random variable, s1 = τ1s0, where τ1 follows the distribution, P (τ) =
Nτ (N−1) 1. For the next iterations the same procedure is repeated i.e. replacing
by drawing from prior with L > Li (Li is the lowest likelihood at ith iteration).
Corresponding reduced prior volume will be si = τisi−1. By this procedure the
algorithm moves to go to high likelihood region with decreasing prior volumes.

The mean and standard deviation of ln t are, respectively[10],

〈ln t〉 = − 1

N
; σ[ln t] =

1

N
. (3.19)

after i iterations the prior volume will be approximately ln si ≈ −(i±
√
i)/N . Thus,

we can take si = exp(−i/N). Alternatively, the mean and standard deviation of t
are[10],

〈t〉 =
N

N + 1
; σ[t] =

N

N + 2
−
(

N

N + 1

)2

. (3.20)

1This is the distribution for largest of N samples drawn from U(0, 1)
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Algorithm 3 Nested Sampling Algorithm [6]

Sample N points θ1, ., θN from prior.
Initialize Z = 0, X0 = 1.
for i = 1, 2, ., j; do

Store the lowest of the current likelihood values as Li,

Set Xi = exp(−i/N) or [N/(N + 1)]i,

Set ωi = Xi−1 −Xi,

Increment Z by Liωi,

Replace the point corresponding to lowest likelihood value Li by a new sample
drawn from the prior with L(θ) > Li.
end for

3.7.3 Discussion on Nested Sampling

Few of the importance features of nested sampling is discussed below:
Posterior samples {θi}Ns

i=1 can also be calculated as a byproduct of the ‘Nested
Sampling’ algorithm. According to Skilling [24], we can get samples from posterior
by sampling from the area we already calculated while evaluating evidence or we
can take the {θ}Ns

i=1 values multiplied by the importance weight Liωi.
Therefore, if we use this method model class selection problem and system iden-

tification problem for each model can be done without any extra cost.
Chopin [?] proposed a ‘nested importance sampling’ technique where sampling

from prior distribution is difficult. So instead we can sample from p̂(θ|Mk), cal-
culate L̂(θi|Mk) (or L̂i)and finally multiply L̂iωi by importance weight, Wi =
p(θi|Mk)/p̂(θi|Mk).

Nested sampling technique samples more from the prior in regions where likeli-
hood is high and less from low-likelihood region leading to higher efficiency. Also,
it reduces multidimensional integral to one-dimensional integration. On the other
hand this technique is not useful for likelihood with multiple peaks. In that case
some modifications of this algorithn has been proposed.

3.8 Closure

In the last two chapters the steps of Bayesian model class selection has been
discussed. In the next few chapters a formulation to incorporate results from exper-
imental validation in Bayesian model class selection will be presented.
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