Neural Network

m Neural networks are used as universal approximator of functional relationship y = f(x).

m Feed-forward Neural Network:

Input Hidden Hidden Output
layer layer #1 layer #N g layer

Z1

m The universal approximation theorem states that feed-forward neural networks with at least
one hidden layer and large enough number of neurons, and differentiable activation
functions, can approximate any continuous function on a compact support.
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Neural Network

m A closer look at one hidden unit known as the neuron:
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m For a single neuron:

n
= 0j (Z Wi Xi + bj)
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m For the full network:
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= In matrix form: [y =Wy (o(...0 (Wx+bM)...)) + bo]
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Activation Function

= Sigmoid: o, (2) = 77i= m Tanh: o (2) = tanh(2)
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= Rectified Linear Unit (ReLU): = Exponential Linear Unit <E|f—U)1 ;
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Training of Neural Network

m The parameters of a neural network: 8 = [{W};\fo : {b};\/:*’o].

m These parameters are selected by minimizing the error between the prediction of the
network and measured data for a training dataset D = {x;, y; L. This procedure is known
as the training of the network.

m A common loss function used for training is the mean squared error (MSE) given by

N

J(H) = lN Z (yl - ypred(xi))2
i=1

m Stochastic gradient descent (SGD) is an efficient strategy to update them

)
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|
learning rate

M At every iteration, only a small batch of training data is used to estimate the gradients
and update the parameters.
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Backpropagation

m Backpropagation is used to estimate the derivative 22
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Weights
m Use chain rule from your Calculus course

oJ  8J do;  aJ do; 9z
8W,’j - an 8W/j - 80/ 82,- 8Wij

m For just this one neuron

8
m Third term: z; = Z, 1 WiiX; + bj = 8;/,] = X;
m Second term: —, . depends on the activation function used.
For Sigmoid activation function ng = 0;(1 —0j)
J
First term: For J = E(ytarget oj) we have ggj = 0j — Ytarget
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Backpropagation

\ T Activation
function
From . Output
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m Backpropagation: oJ  0J 90; 9z
ow;  00; 0z Ow

m For a neuron inside a hidden layer

: 0z; :
m:z =S, w.0 - b I — o, from
®m Thirdterm: z; = > /", wjo; + b; = ow; — O from previous layer
80j

m Second term: -— depends on the activation function used.
)

m First term:
0 5~ (9002 _ 5~ (0J 00 02 :Z(a_‘/%w.)
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An Example

m Hidden layer:
W1:{W11 W12}:{0.25 0.1 ]; b1:{b1 ]:[0.1 ]
Woq  Woo 0.1 0.25 bo 0.1
Activation function: Sigmoid.
m Output layer:

WoZ[Wm Wog}:[05 05], bO:O

B Vtarget — 1, J= % (}/target — y)2
m Neural network prediction: y = Wy(o(W1x + b)) + by = 0.6512
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An Example

m Neural network prediction: y = Wy (a(W1x + b4)) + by

m Backpropagation: aJ dd 9oy 9z

OWi 1 N 001 0Z1 OWq1
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9o _ 6,(1 = 07) = 0.2320 o Moo Qo
821
b1 =0.1
2

y =) W0+ by =0.6512

i=1
J=— arget — 2

5> Vrarget = ¥)

oJ  dJ dy
= =
801 8}/ 801

= (¥ — Viarget)Wo1 = —0.1744

oJ od 001 0z

— — —0.0405
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