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Review of Statics

¢ Addition of a system of coplanar forces

— Scalar notation:

F, = Fcos(0)
F, = Fsin(6)

— Cartesian vector notation:

e Force resultants

(5) Fre = Y Fe
(+T> FRy = ZFy

Fr = \/Fg, + Fgy

e (Cartesian vectors

e Unit vector

Fr
0 = tan! Y
FRx
— ~ P A
A = Ad+ A+ Ak
A=.[A2+ A+ A2
COSIX*& COS *ﬁ COS *&
= o SBPS T @By =S,

7 _ g

NN

A — A

Ay, A
= i+ —tj+ 5k

=cosai+cospj+cosyk

cos® & + cos® B+ cos? y = 1
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Figure 1: Force addition.

Figure 2: Cartesian unit vectors.



Addition of Cartesian vectors

Fr=YF =Y Ei+YEj+YEk

Position vector

T =xityj+zk
P - Pe—Ta
= (xp—xa) i+ (yp—ya) j+ (z5 —za) k

Force vector directed along a line

7

=t

=t

F —

XB —x4)%+ (yp —ya)?

0 =
( XB—JCA l+(y3—}/A)]+(ZB—ZA)k

+ (zB — za)

2

)

Dot product

- =
0 = cos™! A-B
AB

.- % =rF

%
A - B = ABcos® = ABy + A,B, + A.B,

¢ Condition for the equilibrium

Y =

Y Fb=0; ) F,=0; ) E,=0.

¢ Moment
Mo = Fd
® Cross product
C=AxB-= Ay Ay A
By By B;
= (AyB; — A;By) i — (AxB; — A;B.) [+ (AsBy — AyBx) k
B P8 f
Mo:7>><?: rx Tty Tz
F. F, E

Figure 3: Position vector.

Figure 4: Dot product.
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Figure 5: Moment.



7 position vector from O to any point on the line of action of the
force.

¢ Resultant moment of a system of forces

]\_}IROZZ?)X?

¢ Principle of moments

Ho=7x T =7 x (F1+ 7))

:?X?1+7X?2
Mo = Fry — Fyx

Figure 6: Resultant Moment.

* Moment about a specified axis

— Scalar analysis: | M, = Fd,

— Vector analysis:

Ma:7Q-<7>><?)

Ugx Ugy Ugz

=1 1y Iz

F. F, F
—>
M, = Muju
Figure 7: Moment about a specified
* Moment of a couple axis.
—
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Figure 8: Couple system.



* Concurrent force system

¢ Coplanar force system

® Reduction of a simple distributed loading

wind pressure

water pressure on the bottom of a tank or side of a tank

Magnitude:

+1R=YF FR:/x

ge=IL,

=0

w(x)dx = /A dA=A

Location:

—|—J\MRO :ZMO

= fxx::OL xw
0N =

_fAXdA
[, dA

(x)dx
fxx:OL w(x)dx

= centroid of the area

* Equations of equilibrium
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Y- Mo

ol o

In 3D:
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Figure 9: Concurrent force system.
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Figure 10: Coplanar force system.
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Figure 11: Distributed loading.
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Figure 12: Equivalent loading.



Concept of Stress & Strain

Axial Loading

Normal Stress

Consider a two-force member subjected to axial loading as shown in
Figure 13. The normal stress developed in the member is given by

,_P
A

This is the average stress over the cross-section. Stress at a particu-
lar point in the cross-section is defined as

_ um AF
T AAS0AA

where AA is small area around the point and AF is the internal force

P:/dF:/adA
A

o

in that area. In general,

Normal Strain

The strain is defined as

e—é
L

where ¢ is deformation of the member. Strain at a given point is

€= M AT I (1)

Hooke’s Law

For the initial portion of the stress-strain plot (up to the elastic limit)
stress is proportional to strain and the proportional constant is
known as modulus of elasticity (E).

o= Ee

‘P

Figure 13: Axially loaded member with
cross-sectional area A.



Deformation

Using Hooke’s law

o= ()= Tt

If the material property, cross-section, or the axial load changes over
the length a few times total deformation is given by

PiL;
~ AE;

1

5:

In general, for varying cross-section or material properties over the
length

L pdx

0=, AE

Factor of Safety
The factor of safety is defined as

ultimate load

FS. = allowable load
In terms of stress

ultimate material strength (stress)
FS. =
allowable stress

Problem 1.

For the bar shown in Figure 14 determine normal stresses in different
parts. Assume the diameters as d4p = dcp = 20 mm, dpc = 40 mm.

Using the free body diagram in Figure 14, FAop = 10 kN, Fgc = 26
kN, and F-p = 21 kN.

. 3 nd3
The cross-sectional areas are Asp = —£, Apc = —<, and
rd?

Hence, the normal stress in different parts

Fap 10 x 103
= = = 31.83 MP
a8 = 40 T w(ooap/a - o83 Mra

Fge 26 x 103
= = = 20.69 MP
TEC = e T m(o.oay/a 2069 MPa

Fep 21 x 10°
= = = . P
ocp ACD 7_[(002)2/4 66.85 MPa




B (o3

AI—'L___:D
IOKN lekN  SkN

- 0.5m >k~ 0.75m —k— 0.5m -

0kN
Fag = 10kN

<—-] LN —> Fac = 26kN
{OkN _

fp=20kNe—[ > 2lkn

The deformation in different parts

FagLag 10 x 10% x 0.5
dap = = = 0.23 mm
AapE T2 70 109

5 FgcLpc 26 x 103 x 0.75
BC — =
ApcE mOUP 70 109
FepLep 21 x 103 x 0.5

Sen = = =048
b AcpE 7(0.02) 02) x 70 x 109 mm

=0.22 mm

Total deformation of the member 6 = d4p + dpc + dcp = 0.93 mm.

Problem 2.

Determine the maximum weight that can be used where the max-
imum allowable stress in the cable is 10 MPa. The diameter of the
cables is 10 mm.

Figure 14: Problem 1.



Using the free body diagram

4
5 Y Fe=0 = — Fapcos60+ Fgc (5) =0

4

Fpc <> = Fap/2
5

Fap = 1.6Fp¢

3
+4Y F, =0 = Fapsin60+ Fpc <5> —W=0
3 3
(1.6Fz¢) V3 ke <) —W=0
2 5
1.986F5c = W
Fpe = 0.504W

Fap = 1.6F5c = 0.806W

Hence,
Fap 0.806 W .
== —F—>— =10262.3W =10x10
UAB A 7_[(0.01)2/4 < Oallow X
This gives W:Tﬂg
10 x 10° ,
e . Figure 15: Problem 2.
W < 102623 974 4N g

Maximum mass allowed, m = W/g = 974.4/9.81 = 99.33 kg.

Problem 3.

Determine the cross-sectional area required for member DF if
Oallow = 120 MPa.
We need to calculate the support reactions first:

4
LY Fe=0 = Ax(1000kN)«(5) =0

= A, =800 kN

+1Y F, =0 = A, + G, — (1000 kN) - (;) =0

= Ay + Gy = 600 kN

+ Y. Ms=0 = Gy-(6m)+ (1000 kN) - (‘;) - (25 m)

_ (1000 kN) - (g) (5m)=0

= G, =166.67 kN, A, = 433.33 kN
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Figure 16: Problem 3.
To estimate the force in member DF consider a section a — 4.

+ Y Mg=0 = —Fpr-(1m)—(433.33kN)- (4 m)
+ (800 kN) - (1.5 m) = 0
= Fpr = 533.33 kN

Hence, the cross-sectional area required

—
FODKN
93333k

Figure 17: Section a —a'.

F 33 % 10°
App = 1PE - PBBXAON 140 1073 2 = 444 mm?
Oallow 120 x 106 N/m’




Problem 4.

Determine the deformation of a bar under its own weight. What is
the equivalent load at the end of the bar that can replace the self-
weight?
Consider the deformation of an element of length dz. The weight

acting on it is

P = pgA(L —z)
where p = density of the bar; A = cross-sectional area; g = gravita-
tional acceleration. Hence, the deformation of the element
Pdz  pgA(L —z)dy
AE ~  AE
Total deformation of the bar

L
(5:/ %(L—z)dz
o E

L
:%/0 (L —z)dz

=B12-122)
_ pgl?
T

Equivalent force at the end

dé =

oA
=(Ee)A
)

=EZA
L

_ EpgL?A
- 2EL

:%pgAL =W/2

where W is the total weight of the bar.

Problem 5.

Determine the deformation at point C. Assume the bar ACD is rigid.

ZFy:O
= Fap+ Fpp =45kN
Y Mp=0
= —Fap-(0.6m)+ (45kN)- (0.4 m) =0
Fap =30 kN
Fpg = 15kN

T ff 1
2

E: id;
o

X g

Figure 18: Problem 4.
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Figure 19: Problem 5.



=51x10"°m
= 0.051 mm
04 m
dc = 6pg + (64 — IpE) - (06m> = 0.113 mm

0AB = = —
EapAap

(30 x 103 N) - (0.3 m)

(200 x 10° Pa) - (7£(0.012) m2)

=143 x10"°m
= 0.143 mm
o = FpeLpE
EpeApe
(15 x 10® N) - (0.3 m)

(70 x 10° Pa) - (7(0.022) m?)

Statically Indeterminate Problems

In these problems, equations of equilibrium are not enough to solve
all the reactions. Hence, equations for compatibility are required.

Problem 6.

Consider the rod made of an outer layer with material 1 (E; = 90
GPa) and a core with material 1 (E; = 45 GPa). It is subjected to
P = 70 kN. Calculate the stresses developed in each component of

the rod.

Equation of Equilibrium: The total load P is carried by both
materials. If P is the load carried by material 1 and P; is the load

carried by material 2

Equation of Compatibility: Further, the deformations of both

materials should be same.

§ =6, =06
P L _ bL
E1A1  ExA;

Eq Aq
Pi=D5(— —
- 2(E2> (A2>

_<9O>_(n(0042—0.022)

7(0.022)

)

1.0.20-— 0 4m —

Figure 20: Problem 6.

Spe



Hence, P; = 60 kN, P, = 10 kN and

P 60 x 103
=l = _ 1591 MP
7= 4T w002 —oo) 01 MPa
P, 10 x 103
=2 = """ —796 MP
2= 4, T ooz 06 MPa
Problem 7.

Determine the support reactions in the shown statically indetermi-
nate structure. AC has E = 50 GPa and CD has E = 100 GPa.

T A //
0.5m |54 GOKN

C l00kN

7777 D

d = 0.02m

TRD _ Ry

Equation of Equilibrium:

+1) F =0
Rs+ Rp =50 kN + 100 kN = 150 kN

Equation of Compatibility:
Assume the reaction at D is redundant and ¢;, = deformation due

Figure 21: Problem 7.



to the load; 6g = deformation due to the reaction. Hence,
6= 90 +r=0
6 =g +dc+dp
(50 x 10® N) - (0.5 m) (100 x 103 N) - (1 m)

= - - =-199x107°
(50 x 10° Pa) - (7t(0.022) m2) (50 x 10° Pa) - (71(0.022) m2) % "
(Rp) - (0.5 m) (Rp) - (1.m) -8
OR = =3.183 x 107°R
R (100 x 109 Pa) - (7(0.012) m2) + (50 x 10° Pa) - (71(0.022) m2) % b
1.99 x 1073
= R, =150 KN — Rp = 87.5 KN / A
-L 50kN
Problem 8. B
Solve the same problem as before but allowing a 1 mm gap for the i (0okN c

deformation of the bar as shown in the figure.
Equation of Equilibrium:

+ 1Y =0 i'“““b
" e

Rp+ Rp =50 kN + 100 kN = 150 kN

Equation of Compatibility: §; = deformation due to the load;
. . Figure 22: Problem 8.
Or = deformation due to the reaction. Hence,

§=0p4+0r=—-1x10"3m
0L = 4B+ Jpc +dcp
_ (50x10°N)-(05m) (100 x10° N)- (1 m) 199 % 10-% m
(50 x 109 Pa) - (7r(0.022) m2) (50 x 10° Pa) - (7(0.022) m2)
(Rp) - (0.5 m) (Rp) - (1 m) -8
Or = =31 107%R
R = 1700 x 10° Pa) - (7(0.012) n2) © (50 x 10° Pa) - (72(0.022) m?) 318310 "Rp
L g o 199x 103 -1x1073
b 3.183 x 108

= Ry =150 KN — Rp = 118.75 kN

= 31250 N = 31.25 kN

Problem 9.

Determine the stresses developed in members BE and CF (E = 70
GPa, radius = 20 mm). Assume the bar ABCD is rigid.
Equation of Equilibrium:

Y F=0
= Ay, =0

Y My =0
= Fpp - (0.5m)+ Fcp- (1 m) = (100 kN) - (1.5 m)
= Fpg + 2Fcr = 300 kN
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Figure 23: Problem 9.
Equation of Compatibility:

265 = b¢
2Fpelpe _ Fcrlcr
EgeApe  EcrAcr

ZFBE . (05 m) o FCF . (05 m)

= (70 x 10° Pa) - (2(0.022) m2) _ (70 x 10° Pa) - (1(0.022) m2)
= 2Fpg = Fcr

Hence,

Fgg = 60 kN, Fcp =120 kN
_ Fgr _ 60x10°N

e 6 P
OpE =~ = (0.022) 2 47.75 x 10° Pa = 47.75 MPa
_ Ferp 120x10°N 6 o
= p = 00D R 95.5 x 10° Pa = 95.5 MPa



Problem 10.

Three cables are attached as shown. Determine the reactions in the
supports.
Assume Rp as redundant. Also, Lap = Lcp = Cols% =2 m.
Equation of Equilibrium:

+ 1) F=0
R4 -cos60° + Rg + R¢ - cos 60° = 100 kN

=

N RA.<;>-+RB4—RC-<;) =100 kN

= Ry +2Rp+ Rc = 200 kN

= 2Rp +2Rp =200 kN [using symmetry R4 = Rc]
= Ra+Rp =100 kN

an Im
wﬁ
‘D .L
00N DOKN

D

Figure 24: Single and double shear.
Equation of Compatibility:

To compute the downward (-ve) deformation (J;) due to the
external load (in this case we do not have any force in the member
BD)

+1)Y F=0
= 2F,pcos60° —100 kN = 0 [using symmetry Fyp = Fcp]
= Fsp =100 kN



Hence,

S — — FADLAD __(100kN)(2m) __400kNm
b T AEcos60° AE,(%) - AE

Similarly, to compute the upward (+ve) deformation (Jg) due
to the redundant reaction R (in this case we have force Ry in the
member BD)

P RpLap RpLpp
R AEcos60° ' AE
_Rs-(@m)  Rs-(im)

- AE - (%) AE

Using the equation of compatibility

0=0,+0r=0

400 kNm ZRB'(Zm)JrRB-(lm) —0
AE AE AE

Rp = 4005kN _ 80N

= R4 =100 kN —80 kN =20 kN = R¢

Isotropic Material

The material properties are same in every direction.

Homogeneous Material

The material properties are same for every position.

Poisson’s Ratio

For the axially loaded member o, = % shown in the figure, even if
0y = 0; = 0 here but €y, €, = 0 due to the transverse contraction.

The lateral strains are equal in this case for a homogeneous
isotropic material and a material constant, known as Poisson’s ra-
tio (v), can be defined as

lateral strain €, €

axial strain €y €y

Using Hooke’s law (0x = Eey)




Multiaxial Loading

For multiaxial loading the generalized Hooke’s law is given by

oy VO

=+p —F -
voy 0y

€y = ——

Y E E

voy VoY

€= —— — —
E E

o

E

Shearing Strain

The shearing strain is defined as shown in the figure. Hooke’s law for
shearing stress and strain is

Ty = GYrry  Tyz = Gyz

Tox = GYax

where G is the modulus of rigidity or shear modulus.

G= E

2(1+v)

For a general stress condition in an isotropic linearly elastic mate-
rial the generalized Hooke’s law:

.

A

N

%

Figure 26: Shear stresses and strains.

ox Voy  voy
YT E B E
o Vo oy v
v E E E
o VO Vo 0
‘ E E E
Ty = G'ny Tyz = G'sz Tox = GYzx
We can write this in a matrix form
€y [ 1 —v —v 0 0 0 ] Oy
€y —-v 1 —v 0 0 0 ay
€, 1({—-—v —v 1 0 0 0 o
Try E| 0 0 0 21+v) 0 0 Tay
Yyz 0 0 0 0 2(1+v) 0 Tyz
Vax | 0 0 0 0 0 2(1+v) | Tox




Inverting this equation

Oy [ 1-v v v 0 0 0 | €x

oy v 1-v v 0 0 0 €y

0y _ E v v 1—v 0 0 0 €

oy [ I+v)A-2v) | 0 0 o L2 o0 0 Ve

T 0 0 0 o L2 o Yyz

Tox |0 0 0 0 0 & || 9
Single Shear and Double Shear

Figure 27: Single and double shear.

z —>D =

Problem 11.

A bolt of diameter 40 mm is tightened such that the decrease in its
diameter is 10 um. Using the property of steel, E = 200 GPa and
G = 77.2 GPa determine the internal force in the bolt.

Given (Sy =10 um =10 x 1076 m, d = 40 mm = 0.04 m.

E 200

5 10 x 107°
Y —4
%y X T 550
€y d 0.04 5> 10
&y _Z25x107h 4
ex=—2 = Sooen = 8.4660 x 10

Hence, the internal force in the bolt

td?

P =0A = (Eex) (4>

2
= (200 x 10° Pa -8.4660 x 1074) - <”(0'404) m2>

=21277 N



Problem 12.

The plate shown in the figure is subjected to biaxial loading. Com-
pute the change in length of the sides and the diagonal. Also, com-
pute the change in the angle ACB. Assume E = 200 GPa, v = 0.29.

y
A B
72228
100-«*"_'_"- 200y,
' dng e
D -..;" 100 MFa
/x//u =
¢
Z 120 MFa,
{= 20mm

Given oy = 100 MPa, 0y, = 0, 0z = 120 MPa.
Using generalized Hooke’s law for multiaxial loading:

Figure 28: Problem 12.

oy vy ver 100 x 10° Pa 0.29 x (120 x 10° Pa) _3
_ _ My Ve —0— =0.326 x 1
=T E E ~ 200 x 10° Pa 200 x 10° Pa 0326 > 10
voy 0y vy 0.29 x (100 x 10° Pa) 0.29 x (120 x 10° Pa) _3
S v T 0— = —0.319 x 10
v E E E 200 x 10° Pa 200 x 10° Pa
vo, Voy 0, 0.29 x (100 x 10° Pa) 120 x 10° Pa _3
_ Vo T = — = 0.455 x 10
“ E E T E 200 x 10° Pa 200 x 109 Pa

Hence, the changes in lengths

S48 = lagex = (02 m) - (0.326 x 1073) = 0.0652 x 1073 m = 0.0652 mm
dpc = Ipcez = (0.2 m) - (0.455 x 107%) = 0.0910 x 1073 m = 0.0910 mm

The change in thickness
6 = tey = (0.02m) - (—0.319 x 1073) = —0.0064 x 107> = —0.0064 mm

To estimate the change in length of the diagonal, first calculate the
length of the diagonal before deformation:

lac = \/lhp +15c

The length of the diagonal after deformation

Vas(1+e)? + (lpe(1 +e2))?



Hence, the change in length of the diagonal

Sac =/ (Uas(1+€x)? + (Isc(1 +€2))2 = /By + B = 0.1105 x 10> m = 0.1105 mm

The change in angle ACB:
Atanf = lap(1+ex) _lap
Ipc(1+e€z) Ipc
_1+e _
146,
=—1.2894 x 10~*

Relative change in the angle ACB = éﬁ}ﬁ % 100% = —0.0129%.
The change in volume

AV =V —Vy = (lap(1+€x) - Ipc(l+€) - t(1+ey)) — (lap - Ipc - t)
~ (lap-Ipc - t) - (ex + €y +€z)
=Vo-(ex+ey+ez)
= 0.3696 x 10~°m> = 369.6 mm®

Problem 13.

Determine the average shear stress in the pin (dia = 20 mm) at B.

b ¢ Fey
¥ 1 2KN
O.lm

2 A Bx
fe—20.25m—A
1O wm B‘_'j

|

ﬂ :H‘r & mm

Pn B

Figure 29: Problem 13.

From the free-body diagram of ABC



Y. F, =0

B, — (2000 N) =0
B, = 2000 N

Y Mp=0

Fep - (0.1 m) — (2000 N) - (0.25 m) = 0

Fep = 5000 N
Y Fe =0
By —Fcp =0

By = Fcp = 5000 N

Hence, the reaction in the pin Rp = |/B% + Bj = 5385 N.
Since the pin is under double shear the shear stress in the pin is
IRp  05x5385 N

_ _ _ 6 _
T= 20 = my = 857x10° Pa =857 MPa
4 -1 m

The bearing stress in member ABC

R 5385 N B 6 b _
% = 4 = (002 ) (00T ) — 20925  10° Pa = 26.925 MPa

The bearing stress in the support

1
1R 0.5 x 5385 N
7\B 6
_ 288 _ = 26.925 x 10° Pa = 26.925 MP
%= "1 T (002 m) - (0.005 m) S “

Stresses on Inclined Sections

Consider the axially loaded bar as shown in the figure. Compute the
stresses (0p and Tp) on an inclined plane a — a’.

Sign Convention: Normal stress from tension is positive and shear
stress producing counter-clockwise rotation is positive.

Using the above sign convention and the free-body diagram, we

can write
N Pcos6 P
og = i ZCOSZG = 0y cos® 0
0 cos 6
-V —Psinf p . .
Tg = ST A T4 cosfsinf = —oy cos B sin 6
0 cos 0
Hence,

0 = 0y cos? 0 = % (1+ cos20)

. Ox .
Tg = —0xcosfsinf = —?x sin 26

e
& N

T S

Figure 30: Stresses on an inclined plane.



Problem 14.

Determine the stresses developed on the inclined plane a —a’.
The axial stress developed in the bar

P 100 x 10° N

O = — =25 x 10° N/m? = 25 MPa

A 0004 m2
Hence,
’ 2 P
og = % (1 +C0529) = 5 ];/I a (1 —|—COS6OO) = 18.75 MPa
x 25 MPa

sin60° = —10.825 MPa

T = —% sin260 =

For a block on the plane a — a’ the complete stress diagram is shown
below.

To obtain this use the following:
side a — a’: Substitute § = 30° to estimate 03p- and T3q0.
side b — b': Substitute § = 30° + 180° = 210° to estimate 0»19- and
100-
side a — b: Substitute 8 = 30° 4+ 90° = 120° to estimate 0590 and Tyoqe.
side @’ — b’: Substitute § = 30° — 90° = —60° to estimate o_gp and
T—60°-

100 Q— P \ﬁé' 10 KN
\y
\\%’.'i'i';o“
?9
25Mf.
S/ / \%_q»sMPa
0.8% \ 0525 M
Woa.

* 18- F5MFa, \ 6-7'5um

Figure 31: Problem 14.



Torsion

Torsion of circular bars

For a circular solid and tubular sections with homogeneous elastic
material assume a plane section perpendicular to the axis remains
plane after the application of the torques (i.e., no warpage). Also,
assume the shear strains varies linearly with the distance from the
center of the axis. The shear strain at the end of the bar is

_PP_p
V= I —C')’max

Using Hooke’s law for shear stress, T = Gy

T = —Tmax
C

The torsion formula can be obtained by equating the external —_— L
torque to the sum of moments developed in the cross-section.

P
/A (ETmadi) =T Figure 32: Shear strain.

A

-
max ]

where | = [, p>dA = is the polar moment of inertia of the circular
cross-sectional area.

4
e . .
] = — for circular sections
4 4
i ST )
= 72 - Tl for hollow sections

For shear stress at a distance of p




Some sample shear stress distributions in a circular, hollow, and L
compound tube are shown in the below figure. ] TMK.

Angle of twist

£
In the elastic range, using the Hooke’s law 0 -
Tmax
Ymax = G
o _ Ic
L GJ
I
For circular bar with varying cross-section
_ v LiLi
¢ ,Z Gili
o
~Jo GJ

Problem 1.

Determine the shear stress developed in the shaft AB and BC.

Figure 33: Sample shear stress distribu-
tions.

(KN

4 KNm

Figure 34: Problem 1.

Shaft AB:

Take a section a — a’ and apply equation of equilibrium
Y My =0
= —Tup+10kNm =0
= Ty =10 kNm



Shaft BC:

Take a section b — b’ and apply equation of equilibrium
Y My =0
= —Tpc+10kNm —4kNm =0
= Tpc =6kNm

Shear stress:

If the shaft AB is solid with a diameter of 8o mm
4 04 4
jo e X (004m)T ) 1076
2 2
In the cross-section, we have two points D and E. At point D,

Te (10 x 103 Nm) - (0.04 m)

e =99.4 x 10° Pa = 99.4 MP
D= 402 x 106 m* x v ‘
At point E,

To (10 x 10° Nm) - (0.03 m) 6

= £ = 74.6 x 10° Pa = 74.6 MP.

E= T 402 x 106 4 X ? “

If the shaft BC is hollow with inner diameter 60 mm and outer
diameter 100 mm determine the minimum and maximum stress
developed in the shaft BC.

For this shaft BC

m(cs—cf) 7 x[(0.05m)*— (0.03 m)4]

_ _ _ -6 4
J= 5 = 7 =855x10"°%m
Tpcca (6 x 103 Nm) - (0.05 m) 6
max — = = 1 1 Pa = 1 P
T ] S5 % 106 i 35.1 x 10° Pa = 35.1 MPa
T )
min — BCC1 - ﬂTmax == M x 35.1 MPa = 21.06 MPa
] C2 0.05m

If the shaft BC has an inner core made of a different material
(G¢ = 2G,) determine the maximum stress developed in them.

With an inner core the problem becomes statically indeterminate.
Let us assume T, and T, are the torsional load carried by the outer
layer and the inner core, respectively. The equation of equilibrium
here,

To+ T, = Tgc = 6 kNm

The compatibility equation to be used here

¢B,c = QDB,o
T.L  T,L
= =
GeJe  Golo

_ (G Je
- = () ()
Z x (0.03 m)*

Te = 2% 710,05 m)* — (0.0 m)]

x T, = 03T,




Hence, T, = 6 kNm /1.3 = 4.615 kNm and T, = 1.385 kNm.
Maximum shear stress

Teer (1385 x 103 Nm) - (0.03 m)

= = = 32.66 MP
Tmax,c ]c % » (003 m)4 a
Tocp (4615 x 10° Nm) - (0.05 m)
fmaxo = 7 Z7(0.05 m)* — (0.03 m)¥] a
Tocr (4615 x 10° Nm) - (0.03 m)
R — =162 MP
Tmin,o = Z7(0.05 m)* — (0.03 m)*] ?
Problem 2.

Determine the shear stress in AB and rotation at end D.

"‘—"‘"fm-——;.[

200 b
: 14?,/-
| KN 100mm
[" —
D ! ! ‘ 4]
E
Using the free-body diagram for shaft CD as shown
Y My=0
= Ferc =1kNm = 1000 Nm
1000 Nm

Using free-body diagram of shaft AB, Fc = Fp

Y My=0
= Fprg =Ty
= T, = (10,000 N) - (0.2 m) = 2000 Nm

Figure 35: Problem 2.
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Figure 36: Problem 2: Free-body
diagrams.
For this shaft AB, Tgyg = T4 = 2000 Nm and
= (s —c}) _ 7mx[(0.05 m)* — (0.03 m)*] 855 % 106 m
2 2 '
Tagco (2000 Nm) - (0.05 m) 6
= = =117 x 10° Pa = 11.7 MP
fmax = 7 855 x 106 m? X107 Pa MPa
T .
Tonin = Afcl = %Tmax = % x 11.7 MPa = 7.02 MPa

The rotation at B

TapLag (2000 Nm) x (1 m)
= = = 0.0029 rad
PB = Gl (80 10° N/n?) x (855 x 10-6 mA) "

From the Figure 37

¢B - (0'2 m) = ¢c- (0.1 m) Figure 37: Problem 2: Rotation of both
= ¢c = 2¢p = 0.0058 rad wheels.

TCDLCD (1000 Nm) X (2 TH)
= ¢p = “E€D=CED _ (0058
90 =dct G, T80 x 10° N/m2) x (.02 x 10-6nrd)

= 0.012 rad



Problem 3.

Determine the deformation at the end A for the shaft shown below.
Assume G = 80 GPa and the radius of the shaft for the portion AD is

30 mm and for the portion DF is 60 mm.

BEOKNW |0KNm  10KNm

AN
/ . e
4 e/ B8/ A

£] D

F

je— 250nm —He— 2.50 mm ——ﬂ(-—)f‘—‘ﬂ‘_—"l

100 100

mm

100

Using equation of equilibrium,

Y M,=0
Tap =0, Tgc = 10 kNm, Tcp = 20 kNm,
TDE =20 kNm, TEF =70 kNm.

The polar moments of inertia

Jas = Jsc = Jop = g % (0.03 m)* = 1.27 x 1076 m

JoE = Jer = % % (0.06 m)* = 20.36 x 1076 m*

The rotation at end F is ¢y = 0 and

TerLErF TpeLpE
= — ), = _|- == ==
3 Gler $p = ¢k GloE
TepLep TpcLpc
= ¢p + , ¢p = o+ ¢
$c=¢o GJcp 5 = e GJac
TagL
Pa = g+ —2AF

GJas

mm mwm

Figure 38: Problem 3.



Hence, the rotation at end A

T;L;  TypL TpcL TcpL TpgL TerL
Z,,7A3A3+BCBC+CDCD+DEDE ErLEF

P4 LGl T Glap " Glsc | Gleo | Glor | Gler
o (10000 N1m) x (0.1 1) (20000 Nm) x (0.1 1)
(80 x 10° Pa) x (1.27 x 10-6 m*) (80 x 10° Pa) x (1.27 x 10-6 m*)
(20000 Nint) x (0.25 m) (70000 Nint) x (0.25 m)
(80 x 109 Pa) x (20.36 x 106 m*) ' (80 x 10° Pa) x (20.36 x 10-6 m?)
=43.29 x 1072 rad
Problem 4.

Design the stepped shaft in Problem 3 if the radius of the shaft
ABCD is half the radius of the shaft DEF, the allowable rotation at
end A is 30 x 1073 rad, and allowable shear stress in the shafts should
be less than 120 MPa.
Let us assume the radius of the shaft ABCD is c.
Jag =Jpc = Jcp = §C4

7r
JoE = Jer = E(ZC)4 = 8mct

Hence,

oa=Y TiLi _ TapLa | Tpclpc | Teolep | Tpelpe | TerLer
~ GJi GJaB GJpc Glep GJpE GJer
(10000 Nm) x (0.1 m) (20000 Nm) x (0.1 m)
(80 x 10° Pa) x (t/2 x ¢*) = (80 x 10% Pa) x (71/2 x c*)
(20000 Nm) x (0.25 m) (70000 Nmt) x (0.25 1)

30 x 1073
(80 x 10° Pa) x (87tc%) (80 x 10° Pa) x (87tch) ~ "«
= 614 [636.62 + 1273.24 4 198.94 4 696.30] < (30 x 1072) x (80 x 10°)
= 28045‘1 <24 x10°
C
= s L 1688 % 1076 et

2.4 x 10°
= [c>0.033 m =33 mm|

From the maximum shear stress in the shaft ABCD
Tepe (20000 Nm) - ¢
Jep  m/2c¢

12732.4
5 Pa<120x10° Pa

= |c>47.34 mm

< 120 MPa

Tmax =




From the maximum shear stress in the shaft DEF

Ter(2¢) (70000 Nm) - (2c)

Tmax = = 8ct < 120 MPa

JEF
70.4
55; Pa < 120 x 10° Pa

= |c¢>35.94 mm

Choose the maximum of these: ¢ ~ 48 mm and 2¢ ~ 96 mm.

Problem 5.

Determine the support reactions T4 and Tr if the end A is fixed in
Problem 3.

Assume the reaction T4 is redundant and ¢; = rotation due the
external load, ¢ = rotation due to the reaction T4.

From Problem 3,

¢ = 4329 x 1073 rad

TiLz 03m
= — " = _T
IR Zl: GJ; A [(80 x 10° Pa) - (1.27 x 10-6 m*)
" 0.5m }
(80 x 109 Pa) - (20.36 x 10— m*)

= (326 x107%)T,
Using equation of compatibility

¢r+¢r =0
= 4329 %1073 — (326 x 107 )T, =0
= T, =13279.1 Nm = 13.28 kNm
= Tp =70 kNm — T4 =56.72 kNm

Power transfer

For a power transmission shaft

where P is the power transmitted, f is the frequency of the transmis-
sion, and T is torque in the transmission shaft.

N Dkltm  10kNm

\.__;/

F E i P s
1
SOKNM
i % 10KkNm _ [OKN#

=T

Figure 39: Problem 5.



Problem 6.

Design the thickness of a transmission shaft with an outer radius of
20 mm to transmit a power of 50 kW at a frequency of 3000 rpm if
maximum allowable shear stress is 25 MPa.

Here, P = 50 kW = 50,000 W = 50,000 Nm/s,

f =3000 rpm = 30 Hz = 50 s~1. Hence,

P 50,000 Nm/s

= = =159.15 N
2 2mx (50s71) "

T

The outer radius ¢, = 20 mm.
The polar moment of inertia | = %(c3 — cj) = £ [(0.02 m)* — cf]
The maximum shear stress developed

Te,  (159.15 Nm) - (0.02 m)

Tax = —= = < 25 MPa
g Z[(0.02 m)* — c]
2.0265 Nm?
= 2 T < 25%10° Pa
(0.02 m)* — ci
2.0265 Nm? i 4
e < (0.02 —
= 5x106 pa < (002m) -
2.0265 Nm?
4 4
0.02 o
= < (002m) = o6 pa

= 1 <0.01676 m
= cp—c1 > 324 mm

Hence, a thickness of 4 mm is required for the transmission shaft.






Bending

Sign convention

v
M
M
The positive shear force and bending moments are as shown in the C T — :lw
figure. v

Centroid Of an area Figure 40: Sign convention followed.

If the area can be divided into n parts then the distance Y of the
centroid from a point can be calculated using

Yii1 Aibi

Y =
i1 A

where A; = area of the ith part, §j; = distance of the centroid of the ith
part from that point.

Second moment of area, or moment of inertia of area, or area

moment of inertia, or second area moment Y

’
For a rectangular section, moments of inertia of the cross-sectional T x ‘Ed
area about axes x and y are h x

)

1
Iy = bk
l—b—3
1 Figure 41: A rectangular section.
_ 113
Iy = 5hb

Parallel axis theorem

This theorem is useful for calculating the moment of inertia about an
axis parallel to either x or y. For example, we can use this theorem to
calculate I,.



Ly = I + Ad?

Bending stress

Bending stress at any point in the cross-section is

where v is the perpendicular distance to the point from the centroidal
axis and it is assumed +ve above the axis and -ve below the axis. This
will result in +ve sign for bending tensile (T) stress and -ve sign for
bending compressive (C) stress.

Largest normal stress

Largest normal stress

_ ’M|max'c _ |M|max
I S

Om

where S = section modulus for the beam.

For a rectangular section, the moment of inertia of the cross-
sectional area I = 11—2bh3, c=h/2,and S=1/c= %bhz.

We require 0y, < 0y (allowable stress)

This gives

M
Smin = | |max
Oall

The radius of curvature

The radius of curvature p in the bending of a beam can be estimated
using

Problem 1.

Draw the bending moment and shear force diagram of the following
beam.



Figure 42: Problem 1.

AKN/m 15 kN

Step I:

Solve for the reactions.

HY F=0= A =0
1

1 F =0 = Ay+By— 5 (LkN/m)- (2m) = (1kN/m) - (2m) =0

= Ay+ By, =3kN
+nZMA:O = —i-(lkN/m)~(2m)-(im)—(1kN/m)-(2m)~(3m)+By-(5m)—(1.5kN)~(6m)_O
= B, =327 kN

= Ay =123kN

Step 1I:

Use equations of equilibrium.

0<x<2m:

+1Y R =0
1
= V-5 (1/2)- (1) +123=0
x2
= |V=123- <4) A,d.z;xﬂ
14 =023 kN Figure 43: Free body diagram for
x=2m 0<x<2m.




Take moment about the right end of the section

+ Y M=0
x2 X
:’M+<4)'Q>_me:0
= | M =123x — 0083
M —1.796 kNm
x=2m
2m<x<4m:

= —V—(x—2)—-1+123=0

= |V=223—-x

%4 = —177kN

x=4m

V=0atx=223m

Take moment about the right end of the section
+ Y M=0
-2 4
= M+1-(x-2)- (xz >+1~ <x—3> —123x=0

= | M= —0.67+223x — 0.5:2 |

M =0.25 kNm

x=4m

Idm<x<bm:

+1Y F,=0
= V-15+4+327=0
-
Take moment about the left end of the section
+ Y M=0
= —M+327)-5—-—x)—(15)-(6—x)=0
= |M=735-177x|

M = —15kNm

x=bm

Sm<x<6bm:

+1Y F =0
= [V=15]

|.23kN

Figure 44: Free body diagram for
2m<x<4m.

.S kN

MCT:TA

3.27kN

K——"—*‘Tg:)"“—'“h-’{

Figure 45: Free body diagram for
dm<x<5m.

. 1.5 kN
14 Tc—__—_J_f
o 2 —She— -

Figure 46: Free body diagram for
S5m<x<6m.



Take moment about the left end of the section

+AY M=0
= —M~-(15)-(6—x)=0

= |M=15x-9

Note: |V =

aM
dx

The BMD and SFD are drawn next.

v
(x N)

()

1.23

Figure 47: Bending moment and shear
force diagrams.

SFD
15 g
4 x(m)
| -|-77
BMD
z(m)

-vh



Note: Maximum bending moment occurs at x* where

d7M

dx lx=x+
V=0
223 —x* =0
x*=223m

Problem 2.

(a) Draw the bending moment and shear force diagram of the follow-
ing beam.

Step I:

Solve for the support reactions.

LY R=0= A =0
+1Y F,=0 = Ay+B,=4kN

+ Y My=0 = —(4kN)-(1m)+28kNm+B,-(3m)=0
= B, =04kN
= Ay =36kN
Step 1I:

Use equations of equilibrium.

Figure 48: Problem 2.



0<x<lm:

+1Y F=0
- [V=36]

Take moment about the right end of the section

+ Y M=0
= M—(36)-x=0

o
= 3.6 kNm

x=1 m—Ax

Im<x<2m:

+1) F=0
= —V-4+36=0
3
Take moment about the right end of the section
+ N ZM =0
= M+4-(x—1)—(36)-x=0

= |[M=4-04x

M =3.6 kNm
x=1 m+Ax
M =32kNm
x=2 m—Ax
2m<x<3m:
+1)YE=0

- [V=—od

Take moment about the left end of teh section
+ " ZM =0
= |[M=04(3-x)|

=04 kNm
x=2 m+Ax

(b) Check the required section for this beam with ¢,;; = 25 MPa.
Here, |M|max = 3.6 kNm.

_ |Mlmax 3.6 x10° Nm

o 25 %106 N/m?
=1.44 x 10~ %
=144 x 10° mm®

S min

\)

v
h‘s"kN
- —A

Figure 49: Free body diagram for
0<x<1m.

4K\
n—ln—i M
C ]
v
x —3

3.6%N

Figure 50: Free body diagram for
1m<x<2m.

M

0-4KN

ﬂ<
>4

Figure 51: Free body diagram for
2m<x<3m.



36

Hence, for a rectangular section

_ L1,
S—6bh =

For this beam,

1
6

Q| =

W% = 21600 mm?
h = 146.97 mm

Let’s take h = 150 mm.

To design a standard angle section, we can use L 203 x 203 x 19

- (40 mm) - h?

- (40 mm) - h? = 144 x 10> mm®

(lightest) with S = 200 x 103 mm® @ 57.9 kg/m.

Shape S(10% mm®)
L 203 x 203 x 25.4 259
L 203 x 203 x 19 200
L 203 x 203 x 12.7 137

Problem 3.

Calculate the moment of inertia of the T section with cross-sectional

area shown below about the centroidal axis x’.

Aj (mm?) | 7; (mm) | A;f; (mm?)
(1| 2x10° 75 225 x 10°
(2) | 3x10° 160 320 x 10°

) 5x 103

545 x 103

Figure 52: Bending moment and shear
force diagrams.



4) mm z T
¥=109mm @

|

Hence, the distance to the centroidal axis from the bottom of the

—

20 mm

section is
v_ L Aifi _ 545 x 103 mm3
Y A; 5 x 103 mm?
=109 mm
Method I:

Using the parallel axes theorem,

1
L = —=bh® + Ad?
1 12b + Ad

= o5 - (0.1 m) - (0.02m)* + (0.1 m) - (0.02 m) - (0.051 m)?

=527 x 107 m*

_ 1.3 2
12—121711 + Ad

= % -(0.02 m) - (0.15 m)3 + (0.02 m) - (0.15 m) - (0.034 m)z

=9.09 x 107° m*
Hence, the moment of inertia of the T section with cross-sectional
area about the centroidal axis x’
Lo=L+1
=14.36 x 107° m*

Figure 53: Problem 3 (Method I).



Method 1I:

K_____..Iwwm-—-—ﬁ
28} | |

e
wi@® | | @]
wm'i :

e H—pe—
40 20 40w
nm L)

Using the parallel axes theorem, for the overall rectangular section

— 1 3 2
lo = 5bh’ + Ad

= % -(0.1m)-(0.17 m)3 + (0.1 m) - (0.17 m) - (0.024 m)Z

=50.73 x 107° m*

Iy = Iy = f—zbh3 + Ad?

= % - (0.04 m) - (0.15 m)® 4 (0.04 m) - (0.15 m) - (0.034 m)?

=18.19 x 107® m*
Hence, the moment of inertia of the T section with cross-sectional

area about the centroidal axis x’
Lo=1,— Iy — Iy
=14.36 x 1076 m*

(b) If this section is subjected to 5 kKNm bending moment estimate

the bending stresses at the top and at the bottom fibers.
Here, M = 5 kNm. Hence,

Myrop (5% 10% Nm) - (0.061 m)

oy = =77, 14.36 x 10-6 m*
— —21.24 MPa = 21.24 MPa (C)

Figure 54: Method II.



o Myeor _ (5 x 103 Nm) - (—0.109 m)
bot = 7 14.36 x 106 m*

— 37.95 MPa (T)

Problem 4.

For an angular section shown below estimate the moment of inertia
about the centroidal axis x.

= 100 mw —|

Y 20mm T

F5mm
150 W™ x
.L. \_lm:_.—__: T
T 20wm i
Method I:

Using the parallel axes theorem,

1

h =1 = b’ + Ad?
1

= E . (

=852 x107% m*

0.1 m) - (0.02 m)3 + (0.1 m) - (0.02 m) - (0.065 m)?

1 3

I, = Ebh
1

T 12
=222 x107° m*

-(0.02 m) - (0.11 m)?

Hence, the moment of inertia of the angle section with cross-
sectional area about the centroidal axis x
Li=hL+L+1s
=19.25x 10 m*

Figure 55: Problem 4 (Method I).



Method 1I:

For the overall rectangular section

1 3
lo = —5bh
1
= E . (
=2813 x 1070 m*

0.1 m) - (0.15 m)3

1
Iy = Eblﬁ
1 l— B0wm—3|
= —-(0.08 m) - (0.11 m)?
12 Figure 56: Method II.
=8.87 x 10 ° m*

Hence, the moment of inertia of the angle section with cross-
sectional area about the centroidal axis x

Ix = Io - Ill
=19.25x 10"° m*

Problem 5.

Calculate (a) maximum bending stress in the section, (b) bending
stress at point B in the section, and (c) the radius of curvature.
Using the parallel axes theorem,

L=1I= f—zbh3 + Ad?
0.25 m) - (0.02 m)3 + (0.25 m) - (0.02 m) - (0.16 m)?

= E . (
= 12817 x 10°° m*

1
L = —bh®
2712
1
= —-(0.02m)- (0.3 m)?
T (0.02 m) - (0.3 m)
=45x10"% m*
Hence, moment of inertia of the cross-sectional area about the
centroidal axis x
Li=hL+L+1Is
=301.33 x 107° m*

(a) Maximum bending stress

oo — Mlmax-c _ (45 103 Nm) - (0.17 m)
" I a 301.33 x 106 m4

=25.4 MPa




Figure 57: Problem 5.

IgKN
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‘.t ‘_zo-m 160 mm

] 20 wm
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(b) Bending stress at B

e Mys _ (45 x 103 Nm) - (0.15 m)
B I, 301.33 x 10—6 m*

= —22.4 MPa = 22.4 MPa (C)

(c)
M (45 x 103 Nm)

o EL. (200 x 107 Pa) - (301.33 x 10—¢ m%)
=747 x10 4 m!

Hence, the radius of curvature
p=1339m
(d) If a rolled steel section W 200 x 86 is used then we have
=949 x 100 m* =949 x107% m*, c = 0.111 m, yg = —(0.111 —0.0206) m = —0.0904 m
Maximum bending stress

|M|max - (45 x 103 Nm) - (0.111 m)
0'”1 = = 5 7
Ly 94.9 x 1076 m

= 52.63 MPa




Bending stress at B

oy — _Mys __ (45x 10® Nm) - (—0.0904 m)
I 94.9 x 106 m4

= 42.87 MPa (T)

) == 237x10 3 m!

The radius of curvature

1 M
Ely
p=421.8m

Composite beams

The section of the beam consists of material 1 with elastic modulus E;
and material 2 with elastic modulus E,.

Step 1
Assume material 1 (generally the with smaller E;) as reference mate-
rial.
Define n, = % =1,n= %
Step 11
Estimate the position of the neutral axis Y using
y = Linidifi
YiniA;

Step 111

Calculate the moment of inertia of the cross-sectional area about the
neutral axis (NA)

1
I, = Z Enibih? + I’Z,'Aidl2
i

Essentially the cross-sectional area is transformed into section
shown here made up of only the reference material.

Step IV

Calculate the stress developed

Q| LM

L.
b,

Figure 58: Composite beam section.

pudfly wsen FE A
yﬁ @ <
Jsan iy =

Figure 59: Transformed beam section.



The radius of curvature is given by

1 M

0 El

where E; is the elastic modulus of the reference material.

Problem 6.

For the section shown here made of wood (E; = 16 GPa) and steel
(E» = 200 GPa) calculate the bending stress at B and C when sub-
jected to a moment of 1.5 kNm.

=100 v —p}

B
Wood T

@ 200 mp,

Wmms 4 e S — ) P— | S—

<!

e 20 mm

Steel Ye—3|
50mm

Step 1

Assume wood with E; = 10 GPa as reference material.
Define 1, = % =11 = % =200/16 = 12.5.

Step 11

The distance is measured from bottom of the beam

niA;j (mm?) | g; (mm) | n;A;y; (mm?)
(1| 20x10° 120 2400 x 10°
(2) | 125x10° 10 125 x 103
Y | 325x108 2525 x 10°

Figure 60: Problem 6.



Figure 61: Problem 6 (transformed

Transformed  gecion o)

=100 mm —»y

200 mm

®

L ) — 20mm
L a—— ClZ-S)(_FOM:) ——

Estimate the position of the neutral axis Y using

o YiniAiyi
Y ==—=—"—= =777
YiniA; i

Step 111

Moment of inertia of the cross-sectional area of the wood about the
neutral axis (NA)

1

11: Enlblh% + I’llAld%
-1
12

=102.5 x 1076 m*

(1) - (0.1 m) - (02 m)> + (1) - (20 x 1073 m?) - (0.120 m — 0.0777 m)?

Moment of inertia of the cross-sectional area of the steel plate
about the neutral axis (NA)

1
L= fi’lzbzhg + 1/12142(1%

12
= % -(12.5) - (0.05 m) - (0.02 m)® + (12.5) - (1 x 1072 m?) - (0.015 m)?
=577 x 107% m*

Hence, the moment of inertia of this composite beam is
Lh=5L+5L=1602x10"°% m*

Essentially the cross-sectional area is transformed into section
shown below made up of only the reference material (wood here).



Step IV

The stress developed at point B
n1Myp
T
(1) - (1.5 x 103 Nm) - (0.22 m — 0.077 m)
a 160.2 x 10—6 m*
= —1.33 MPa = 1.33 MPa (C)

The stress developed at point C
B nzMyC
Iy
(12.5) - (1.5 x 103> Nm) - (—0.077 m)
160.2 x 10~6 m?
9.09 MPa (T)

oc=

The radius of curvature is given by

1_ M
o Eily

1.5 x 10> Nm
(16 x 109 Pa) - (160.2 x 10~6 m*)

=0585x 103 m!
= p=1708.8 m

where E; is the elastic modulus of the reference material (wood here).

Reinforced concrete sections

Reinforced concrete is made up of concrete and steel bars. Since
concrete can not take any tension and cracks appear in it only the
area of the concrete section above neutral axis and the steel bars
should be considered for the calculation of I,.

Problem 7.

For the reinforced concrete section shown here (with 4 Re bars
@20omm dia.) calculate the bending stress in the concrete at B (the
top) and in the steel when subjected to a moment of 20 kNm. Use
20 GPa as the elastic modulus of concrete and 200 GPa as the elastic
modulus of steel.

Step 1

Assume concrete with E; = 20 GPa as reference material.
Define 1, = % =1, 1 = % =200/20 = 10.



Figure 62: Problem 7.
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Figure 63: Problem 7 (transformed

le—— 500 M — 2 section).
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Step 11

Assume the position of the neutral axis as shown in the figure. De-
note the distance from the bottom of the top flange to the neutral axis

to be x.
The distance is measured from the assumed neutral axis of the

beam
Material YliAi (mmz) ¥i (1’1’11’1’1) nl-Al-yl- (1’1’11’1’13)
Concrete (1) 20000 20 + x 20000(20 + x)
(2 200x 3 100x2
(10)- (4~ F - (20)?)
teel —(180 — - -
Steel | (3) ~ 1otes (180 — x) 12566 (180 — x)
5 20000(20 + x) + 100x>
—12566(180 — x)

The position of the actual neutral axis Y from our assumed one is

v Y ini Ay
YiniA;



If our assumption of the neutral axis is true then

Y=0
Yini Ay
= =
YiniA;
= ) A =0
i
= 20000(20 + x) + 100x2 — 12566(180 — x) = 0
= x%+200(20 + x) — 125.66(180 — x) = 0
= x% 4+ 200x + 4000 — 22619 + 125.66x = 0
= x% +325.66x — 18619 = 0
= x ~50mm

Step 111
Moment of inertia of the cross-sectional area of the concrete parts
about the neutral axis (NA)

1
I nlblh% +1’11A1d%

12
_ 1
12
=100.7 x 1076 m*

(1) - (0.5 m) - (0.04 m)3 + (1) - (20 x 1073 m?) - (0.07 m)?

1
L= fi’llbzl’l% + nlAzd%

12

1 ' 2
=13 (- (02m) - (0.05 m)® + (1) - (0.2 m x 0.05 m) - (0205 m)
=83 %1076 m*

Moment of inertia of the cross-sectional area of the steel about the
neutral axis (NA)

;= nyAsd?
= (10)-(4- g - (0.02 m)?) - (0.13 m)>
=2124x107% m*

Note that we are ignoring the 1/12bh® part for the transformed steel
section.
Hence, the moment of inertia of this composite beam is

Li=L+bL+1L =3214x10"°m*

Essentially the cross-sectional area is transformed into section
shown below made up of only the reference material.



Step IV

The stress developed at point B (i.e., the top fiber) in the concrete
— _mMys
Ly
(1) - (20 x 103 Nm) - (0.09 m)
- 321.4 x 106 m?
= —5.6 MPa = 5.6 MPa (C)

This is the maximum compressive stress in the concrete.
The stress developed in the steel
(10) - (20 x 10°> Nm) - (—0.13 m)
321.4 x 1076 m*
=80.9 MPa (T)

The radius of curvature is given by

1_ M
o Eilx

20 x 10° Nm
(20 x 109 Pa) - (321.4 x 106 m*)
=3111x10 3 m!
= p=23214m

where E; is the elastic modulus of the reference material (concrete
here).

Problem 8.

For the reinforced concrete section shown here (with 4 Re bars
@20mm dia.) calculate the bending stress at B and C when sub-
jected to a moment of 20 kNm. Use 20 GPa as the elastic modulus of
concrete and 200 GPa as the elastic modulus of steel.

Step 1
Assume concrete with E; = 20 GPa as reference material.
Define 1, = % =1, = % =200/20 = 10.

Step 11

Assume the position of the neutral axis as shown in the figure. De-
note the distance from the bottom of the top flange to the neutral axis
to be x.



400 mm —>|

Figure 64: Problem 8.

=400 mm —3|
B T
x
570 wm 600mm i
- 20 twe
S dia J( 570-x
somd 0000 _ _
area =Ny As
The distance is measured from the assumed neutral axis of the
beam
Material n;A; (mm?) 7 (mm) n; A;j; (mm3)
Concrete @ 400x z 200x2
(10) - (4- F - (20)%)
Steel | (2) _ 1566 (570 — x) 12566(570 — x)
by 200x? — 12566(570 — x)

The position of the actual neutral axis Y from our assumed one is
o LiniAii
y = =i
LimiA;
If our assumption of the neutral axis is true then

Y=0
YiniAiyi
YiniA;
= ) miAgi =0
i

=0

= 200x% —12566(570 — x) = 0
= x?+62.83x — 35813 =0
= x =160 mm

Step 111

Moment of inertia of the cross-sectional area of the concrete parts
about the neutral axis (NA)
I.= %nlblh% + VllAld%
1
-5
=546 x 1076 m*

2
(1)- (0.4 m) - (0.16 m)® + (1) - (0.4 m x 0.16 m) - (01§m>



Moment of inertia of the cross-sectional area of the steel about the
neutral axis (NA)

15: nzAsdg
= (10)- (4- g - (0.02 m)?) - (0.41 m)?
= 2112 x 107¢ m*

Note that we are ignoring the 1/12bh® part for the transformed steel
section.
Hence, the moment of inertia of this composite beam is

L= 1.+ I, = 2658 x 107° m*

Essentially the cross-sectional area is transformed into section
shown below made up of only the reference material.

Step IV
The stress developed at point B (i.e., the top fiber) in the concrete

_ _mMys
Ly
(1) - (20 x 103 Nm) - (0.16 m)
2658 x 10~6 m*
= —1.2 MPa = 1.2 MPa (C)

This is the maximum compressive stress in the concrete.
The stress developed in the steel

o= — ”nys
(10) - (20 x 103 Nm) - (—0.41 m)
2658 x 10~6 m4
=30.85 MPa (T)

The radius of curvature is given by

1 M
57 Ellx
20 x 103 Nm
~ (20 x 10° Pa) - (2658 x 10-6 m¥)
=0376 x 103 m~!
= p=2658m

where E; is the elastic modulus of the reference material (concrete
here).



Shearing

Due to the presence of the shear force in the beam and the fact that
Tyy = Tyx, a horizontal shear force exists in the beam that tend to
force the beam fibers to slide.

Horizontal Shear in Beams

The horizontal shear per unit length is given by

_ e
=T

where V = the shear force at that section; Q = the first moment of
the portion of the area (above the horizontal line where the shear is
being calculated) about the neutral axis; and I = moment of inertia of
the cross-sectional area of the beam. The quantity g is also known as
the shear flow.

Average Shear Stress Across the Width

Average shear stress across the width is defined as

_vo

Tave = Tt

where t = width of the section at that horizontal line. For a narrow
rectangular beam with t = b < /4, the shear stress varies across the
width by less than 80% of Taye.

Maximum Transverse Shear Stress

For a narrow rectangular section we can work with the equation
T = % to calculate shear stress at any vertical point in the cross
section. Hence, the shear stress at a distance y from the neutral axis

oG] 025 -5 (5)



_ 11,3
I= 12bh
1%
hZ
vt (§-)
5bh® b
_ 3V(* —4y)
N 2bh3

V(K
ORTxy—Tyx—ZI.<4_ 2)

— a parabolic distribution of stress.

Hence, the maximum stress in a rectangular beam section is at
y=0and

3V
2A

Tmax =

In case of a wide flanged beam like the one shown here the maxi-
mum shear stress is at the web and can be approximated as

- 1%
max — ,
Aweb

Problem 1.

(a) Using the wooden T section as shown below and used in the
previous classes find the maximum shear it can take where the nails
have a capacity of 400 N against shear loads and the spacing between
the nails is 50 mm.
Using the parallel axes theorem,
1

I, = —bh> + Ad?
1= ot

= 117 - (0.1 m) - (0.02 m)3 + (0.1 m) - (0.02 m) - (0.051 m)2
=527 x 107 m*

_ 1 3 2

I = b’ + Ad
1

= 15+ (0.02m) - (0.15 m)* + (0.02 m) - (015 m) - (0.034 m)?

=9.09 x 1070 m*



4) mm z T
¥=109mm @

L

Hence, the moment of inertia of the T section about the centroidal

axis x’

I=L+1
=14.36 x 107° m*

The first moment of the cross-sectional area is
Q= A1n
= (0.1 m) - (0.02 m) - (0.051 m)
=102 x 107° m®

Figure 65: Problem 1: cross-section.

Figure 66: Problem 1: spacing of nails.



The nails have F,,; = 400 N. If g, is the allowable shear per unit
length and s is the spacing between the nails then

Frail = qans
= a1 = Frait _ % =8x10° N/m
Hence,
Gan = VLIXQ
= Vinax = qgl _ (Bx10° ng’;)x 1((1)%6331;( 1070 mY) 1 16 kN

(b) If V. =1 kN and estimate the maximum shear stress.
Maximum shear stress occurs at the neutral axis

VQ _ (1x10°N)- (119 x 107 m?)

_ve_ — 41435 kP
fmax = T T T(1436 x 100 md) - (0.02 m) ?

(c) Instead of two wooden planks as shown before if four wooden
planks, two horizontal nails, and a single vertical nail are used as
shown below. estimate the spacings required for the two horizontal
nails for V. =1 kN and F,,;; = 400 N.

Figure 67: Problem 1: four planks are

used.
80 m SD ™
e—n e
- =i -
20mm 1
% A |
( Shearr £loi
£7%
't__> z

In this case, the shear at the joint of 1st and the 2nd part needs to
be estimated. For this

Q= A1
= (0.05 m) - (0.02 m) - (0.051 m)
=51x10"° m*



Now,

Frail VQ (1x103N)- (51 x 1076 m3)
M —y=—== — 35515 N
s 1777 14.36 x 10-6 m? /m
oogo fnan o AON 05

g 35515 N/m

Hence, a spacing of 100 mm will be okay.

Problem 2.

(a) For the box section shown here estimate the nail spacing required

if V. =1kN and E,,; = 400 N.

1

h=1ly=15-(01m)- (002 m)3 + (0.1 m) - (0.02 m) - (0.04 m)?
=327 x107% m*
1 3
I = 13 = E . (0.02 m) . (006 m)
=0.36 x 107% m*

The second moment of inertia of the cross-sectional area about the

neutral axis

I=Lh+L+L+1,
=2x327%x107% m* +2 % 0.36 x 107 m*
=725x107° m*

The first moment of the top part about the neutral axis is

Q= A1n
= (0.1m)-(0.02m)-(0.04 m) =80 x10"° m3

The shear flow here

2Fyqil . @
S q I
~ (1x10°N)- (80 x 1076 m3)
7.25 x 10-6 m*
o 2x40N 4S00 N 110345 N/m

= 5=0.0725m

Hence, a spacing of 75 mm will be okay.
(b) Calculate the maximum shear stress developed.
At the neutral axis

Q=80x10"%m>+2-(0.03 m) - (0.02 m) - (0.015 m)
=98 x 107 m®

20

mm

fe—— 0O wwm ——>|

o |
® ®
®

e

Figure 68: Problem 2.

Figure 69: Problem 2.

(00 mm



Maximum shear stress

_ Ve
T
~ (1x10°N)- (98 x107° m?)
(725 x 1076 m*) - (2 x 0.02 m)
= 338 kPa
Problem 3.
Design the beam as shown below for 0,;; = 80 MPa and 7,;; =

10 MPa. The depth of the beam is limited to 275 mm. Use standard
rolled steel section.

The shear force and bending moment diagrams are drawn first.
From the diagrams, |V |max = 20 kN and |M|max = 100 kNm.

Design for bending stress

Hence, section modulus required

Sreqd =
100 x 103 Nm

" 80 x 10° Pa
=1.25x%x 1073 m3

= 1250 x 10% mm?>

Since the depth is limited choose W250x80 and add two 8§ mm
thick plates at the top and bottom.

Total depth = 273 mm < 275 mm (okay).

The modified I section has a second moment of inertia about the
neutral axis

I = Iyeam + ZIplafe
=126 x 107° m*
1
=
=197.4 x 1076 m*

+2-

c =136.5 mm

I
S = - = 1446 x 1076 m® > S04

(0.254 m) - (0.008 m)® + (0.254 m) - (0.008 m) - (0.1325 m)Z}

[T
m

SR 3

Bm Bm 5wm

Figure 7o: Problem 3.

(k\T{D
20

(xw) 100

Figure 71: Problem 3: SFD, BMD.

k—254mm —>|

B rm
e ¥

24mm - 257wn

Frm

Figure 72: Problem 3: Modified I
section.



Check for shear stress

A (mm?) 7 (mm) | Aj (mm?)
Plate @ 254 x 8 132.5 | 269.24 x 10°
, @ 254 x 15.6 | 120.7 | 478.26 x 10°
I-section 3
@ 1129 x 9.4 | 56.45 | 59.91 x 10
Py 807.41 x 103
Figure 73: Problem 3: Shear stress
e— 254"‘"0‘: '_'H calculation.
9 mm
() 1 & wm
) - 15
mm
mm

Q=Y Ay =571.11 x 10° mm®, t = 9.4 mm
Hence, maximum shear stress is

. V]maxQ (20 x 10° N) - (807.41 x 1076 m3)
T (1974 x 1076 m#) - (0.0094 m)

= 8.7 MPa < t; (okay)

Problem 4.

(a) Calculate the stress in the bolt that connects steel plates and the "
wooden block as shown if the section is subjected to V' = 10 kN. we
Assume the elastic moduli of steel as 200 GPa and of wood as 12.5 T
GPa. The bolt used has a diameter of 16 mm and a spacing of s = 100
mm is used.

Take steel as the reference material. Hence,

20w
E1 =200 GPa, E, =125 GPa
Er 1
-1 — L Je—— 100 wmwm —>
ni , N2 E, 16

Figure 74: Problem 4.

The transformed section will be the following
The neutral axis will pass through the middle of the section.



TTrovgformed seckion

[]
2'“ [ 1
100w T
. _200mm
NA
s (__5-2.5 mm
=
20,4 L

The second moment of inertia of part 1 about the neutral axis,

1
Il = fl’llbll’li) + i’llAld%
12
1
12

=2427 x 107 m*

(1) - (0.1 m) - (0.02 m)> + (1) - (0.1 m) - (0.02 m) - (0.1 m)?

Similarly,
_ 1 3
12 = ﬁnzbzhz
_1 1 3
=1 (16) -(0.1m)-(0.2m)
=417 x 107¢ m*

For the full section,
[=2L+1, =527 x107% m*

To get the stress in the bolt we need to calculate the shear force
at the bonded surface. Hence, we need the first moment of the steel
pate about the neutral axis

Q1 = mAih
=(1)- (0.1 m) - (0.02 m) - (0.11 m)
=220 x107° m®

The shear flow is

Y
I
(10 x 103 N) - (220 x 1076 m?)
52.7 x 10—6 m*
=41.75x 10° N/m

Figure 75: Problem 4: The transformed
section.

z:r I 1

L |

Figure 76: Problem 4: The top steel
plate.



If the stress in the bolt is T, and the cross-sectional area of the bolt
is A, we can write

TyAp = Fporr = g5
qs qs
- Ap - nd%/él
(4175 x 103 N/m) - (0.1 m)
- (0.016 m)2 /4
= 20.76 MPa

= Tp

(b) Instead if allowable shear stress is 7,;; = 10 MPa determine the
required spacing.
We have

WA _ 60482 m

Sreqd =

Hence, a spacing of 45 mm will be okay.

Problem 5. Aluminum T
Calculate the shear stress in the bonded surface if the section is C,S‘.e:l:‘; @ 100w
subjected to V' = 10 kN. Assume the elastic moduli of steel as 210 hole \\ Thd“j‘)m'
e L]
GPa and of aluminum as 70 GPa. ®
NOTE: In this problem, we need to know the centroid and the Somn-f @
second moment of inertia of a semi-circular area. Please see the Steel 50mm
calculation at the end of this problem. \-J ._JL
Take the aluminum with the semi-circular hole in it as the refer- e—160mm —
ence material. Hence, Figure 77: Problem 5.
Ey =70 GPa, E; =210 GPa .

E, T
nm=1 np=-—-=3
1 2 Eq o0 mvn
Next, to locate its neutral axis /'\ )L

niA; (mm?) 7; (mm) | n;A;7; (mm?) -
(1) | (1)- (100 x 100) 100 1000 x 103 A
Aluminum —(1)- (ﬂ-(20)2> 50 1 4x20
2 3| —36.75 x 10° N
@ = —314.16 — 58.49 e—— 200 mm
Steel 3) - (100 x 50 25 375 x 10° ;
ee (2) | (3)-(100 x 50) 10 Transformed S ection
P 24371.7 1338.25 x 10

Figure 78: Problem 5: The transformed

The neutral axis is located at a distance Y from the bottom where section.

o YumA;y; 133825 x 103
Y= = ~ 55
YiniA; 243717 i




mm

30

oMM the NA.
45 mm
it _ﬂ_._ :
Ys 55 mm

Next, the calculate the second moment of inertia of the cross-
sectional area about the neutral axis. We will separately calculate for

@, @, and @, first.

I] = %n]b]hi’ + 7’11A]d%
1
=5
= 28583 x 107% m*

(1) - (0.1 m) - (0.1 m)® + (1) - (0.1 m) - (0.1 m) - (0.045 m)?

I = li’lzbzhg + ﬂzAzd%
12
1
=5
=16.625 x 107 m*

(3) - (0.1 m) - (0.05 m)% 4 (3) - (0.1 m) - (0.05 m) - (0.03 m)?

4 2
:%.(1)' (nx(O.SOZm) )—i—(l)- (nx(OéOZm) )'(0.005771)2

=0.021 x 1076 m*

Since I, = 7%4 about the axis that passes through the center as shown
in the figure. Detailed explanation is given at the end.
Hence,
I=L+1 —I;=45187 x 107% m*

To estimate the the shear stress we need to calculate the first
moment Q of the cross-sectional area about the neutral axis and we

will use the bottom steel part to do it.

Q =Q2 = n2A272
= (3)- (0.1 m x 0.05 m) - (0.03 m)

=450 x 1070 m®

Figure 79: Problem 5: The position of



Here, t = 100 mm — 40 mm = 60 mm = 0.06 m.
Hence, the shear stress at the bonded surface

_vQ
T It

~ (10 x 10° N) - (450 x 1076 m?)
~ (45.187 x 1076 m*) - (0.06 m)
= 1.66 MPa

Centroid and second moment of inertia of a semi-circular area

Take a small area inside the semi-circular area as shown in the figure.
The area of this element is dA = (dp) - (pdf) = pdpdb.

Figure 80: Semi-circular area.

N"’

The area of this semi-circular plate is A = 22.
Hence, if the distance to the centroid from the bottom is 7 then
using the figure

Ay‘:/ydA:/psin(G)dA / / psin(8) - (pdpdf)

= < ) / / sin(8)d8) - (o%dp)
o] [ 7]

-1
- (5)(3)-4

The second moment of inertia of the semi-circular area about the x
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Transformation of Stress

Tty
Try > 4 !

A 4

Ox

A

For a plane stress condition, i.e., 0; = Txz; = Tz = 0, if you
rotate the element shown here by an angle 6 the equations for the
transformed stresses are

ox 0y 0y —0
o = — ; Ja > Y cos(26) + Tay sin(26)
Ox — 0,
Tyy = — i 7 Y sin(26) + Tyy €0s(26)
Ox 0oy 0y —0 _
oy = il 5 y_ 22 5 Y cos(26) — Tyy sin(20)

Note that, o,/ + oy = 0x +0y.

Principal Stresses

Principal stresses are the maximum normal stresses acting on the
principal planes if you rotate the element by 6,. You can find 6,

Figure 81: Transformation of Stress.

Figure 82: Principal planes and stresses.



either by dgg' = 0 or by noting that on the principal planes you have

Txlyl = 0
Hence,

2T

2
Omax,min — 2 £ \/(2) + Txy

Note: Anticlockwise angles are positive and clockwise angles are

negative.

Maximum In-plane Shear Stress

Similarly, you can find maximum in-plane shear stress at an angle 0;,
where

Oy — 0y

tan(260;) = — e
Xy

2
Oy — 0,
Tmax:\/( xiz y) +T3%y

Note: 0, and 0; are 45° apart.

Along with Tmax, the normal stresses on all four planes are 0y =
(ox +0y)/2.

Problem 1.

Calculate the normal stress and the shear stress acting on a plane
inclined at an angle 30° to the x axis.

y
20 MPa
A X

10 MPa

30 MPa

Method I:

05 = 6, +45°

Tave

[ 4

Figure 83: Maximum in-plane shear
stress.

Figure 84: Problem 1.



¢

Stress: Area: Force:

< > )
\ A A sin 30° \

30 MPa 30A sin 30°
30° ] 30° 10A sin 30°
—_— A cos 30 —_
10 MPa 10A cos 30°
4 4
20 MPa 20A cos 30°

Figure 85: Problem 1: Calculation of
forces acting on the element.
Using the equations of equilibrium

Y Fu=0

= 0A —20A cos30° cos 30° — 10A cos 30° cos 60°
— 10A sin 30° cos 30° + 30A sin 30° cos 60° = 0
= 0 =16.16 MPa

Y

Y Fy=0
= TA —20A cos30° cos 60° + 10A cos 30° cos 30° 0
— 10A sin 30° cos 60° — 30A sin 30° cos 30° = 0 v'

= T =16.65 MPa %
Tx’y’ x/
Method II: > . ,
Here, we have 4
oy = —30 MPa \
0y =20 MPa
Toy = —10 MPa

Figure 86: Problem 1: Transformed

stresses.
Ox +0y  Ox—

o
Y cos(20) — Tyy 5iN(26)

y 2 2
— 20 —30-20 Nas
_ 230420 730720 i60° — (—10) sin60° ° a
2 2 o 6
. V7
= —5+ 2508 60° + 10 sin 60° 2 ‘\m‘ ;
— 16.16 MPa *
- - 30°
_ x = v .
Ty = 7 sin(26) + Tyy cos(26) 10 MPa
_ 30720 i 60° — 10 cos 60° \
20 MPa

= 255in60° — 10 cos 60°
= 16.65 MPa

30 MPa



Problem 2.

Calculate the normal stress and the shear stress acting on a plane
inclined at an angle 45° to the y axis.

y
20 MPa
A X

45° 30 MPa

Here, we have

oy = —30 MPa
0y =20 MPa
Toy = —10 MPa
ox+0y  Ox— 0
oy = — 5 Y42 5 Y c0s(20) + Ty sin(26)
- _30; 20, _302_ 20 0590° + (—10) sin90°
= —5—25c0s90° — 10sin 90°
= —15 MPa
Oy — 0,

Ty = — : 5 Y sin(26) + Tyy 0s(20)
= 70720 G090° — 10c0s90°
= 25sin90° — 10 cos 90°
=25 MPa

Problem 3.

Consider an element at the top end of this rod.
(a) Calculate the principal stresses, maximum in-plane shear stress.
The top end of the rod is subjected to a torsion T = 5 kNm and a
bending moment M = (10 kN) - (0.5 m) = 5 kNm.

Figure 87: Problem 2.

10 MPa

45°
15 MP/ v

25 MPa 10 MPa

Figure 88: Problem 2: Transformed
stresses.

30 MPa



IOKN 507
C

05‘“/ s

"

g

R:lDFN

The polar moment of inertia | and the second moment of inertia I
of the cross-sectional area

Lt . 4
= mect (0075 m)t 497 5 106 pt
2 2
¢t m-(0.075 m)*
4 4
Hence, in the element, we will have

Tc (5 x 103 Nm) - (0.075 m)

=24.85x107° m*

7T
I=L=1I=]/2=

- — 7.55 MP
T 49.7 % 10-6 m? ¢
Mc (5 x 10> Nm) - (0.075 m)
- Me_ — 151 MP
T 2485 x 106 m? !

The element is drawn next and we have

0y = —15.1 MPa
oy =0
Tyy = 7.55 MPa

Using the equations for the principal stresses

2
Ox + 0y Ox — 0Oy 5
Omax,min = > + \/( > + Ty

2
. 15'21+Oi\/< e 0) +(7.55)2

= —18.23 MPa, 3.13 MPa

The principal planes are located at an angle 0, where

2Tyy

tan(26,) = Pa—

_ 2x755
—-151-0
=-1
= 20, = —45°, 135°
= 0, = —22.5°, 67.5°

Figure 89: Problem 3.

=755 MPa

Figure go: Problem 3: The element.

15.1 MPa



Maximum in-plane shear stress

2
Oy — 0
Tmax = \/<ny> +T%}/
—15.1-0\?
(B sy

= 10.68 MPa

Ox — Oy

tan(26;) = — 2%

_ —151-0
- 2x755
=1
= 0, =22.5°
(b) Find maximum torsion the rod can be subjected to such that

Tmax < 15 MPa.
Using the equation for maximum in-plane shear stress

2
Oy — 04
Tmax-\/( A2 }/) "’T,%y§15MPlZ

= 13, < (15)* — (7.55)> = 168
= Ty < 1296 MPa

Hence, the maximum torsion that can be applied

Tt 1296 MPa

]

J(12.96 MPa)
Cc

— 8.59 kNm

Txy =

Tmax =

67.5°
3.13 MPa
~ 22.5°
18.23 MPa

Figure 91: Problem 3: Principal stresses.

—

e
Figure 92: Problem 3 (b).

Ty

15.1 MPa



Mohr’s circle

y
/
Y
HP
Principal stresses

Oy

A Omin

T x
——— XY
Omax Gp
o
x x
—
\ 4
Os = 0, + 45°
Maximum shear stress
Tave
1o
A
Tav 5 Txy

[ s

+ve shear stress

Figure 93: Stresses acting on an ele-
ment.



Omax

(Uave/ +Tmax)

(Uy/ +Txy>

OUmin

90°

@------------
—
3
o
N~—

@] (‘Tyr 0) (0ave, 0) 26

R )

((TX/ _Txy)
(Cave, —Tmax) p—
2
Ox+07
Tave = XZ ¥ R = (Ux*Uy)Z+T2
= =4 2y

Figure 94: Mohr’s circle.

Problem 4.

Draw the Mohr’s circle for the element shown.
Here, we have

Figure g95: Problem 4: The element.

oy =0

Ty = +T
oy + 0,

Uave:%zo

Hence, the center of the circle is at (gave,0) = (0,0). Also, consider



two points X and Y with coordinates

X:(0,—7)
Y:(0,7)

The center of the Mohr’s circle is at (0,0) and the two points X
and Y are located on the circle as shown in the figure. The radius of
the circleis R = 7.

(0,+71)
Y A
Tmax = R=7
(—71,0) (7,0)
o] / 7
90°
(0,—7) | X

Figure 96: Problem 4: Mohr’s circle.

Hence, the principal stresses are

Omax = T

Omin = —T

They are shown in the next figure.



\/ Principal stresses

45°

The maximum in-plane shear stress, Tmax = R = 7.

Problem 5.

Draw the Mohr’s circle for the element shown.
Here, we have

Figure 97: Problem 5: The element.

Oy =0
(Ty:()
Txy:()

ox + 0y c+0 o
fve= TR T T T2

Hence, the center of the circle is at (0ave,0) = (0/2,0). Also,
consider two points X and Y with coordinates

The center of the Mohr’s circle is at (¢/2,0) and the two points X
and Y are located on the circle as shown in the figure. The radius of
the circleis R = ¢ /2.

Hence, the principal stresses are

Omax = 0

Omin = 0

The maximum in-plane shear stress, Tmax = R = 0/2.



(0/2,0/2)
Tmax = R =0/2
(0,0) (c,0)
olY (¢/2,0) 4/ o
90°
(0/2,—0/2)
Figure 98: Problem 5: Mohr’s circle.
Problem 6. ————— 755 MPa
o
Solve Problem 3 using Mohr’s circle. X
Here, we have S
ox = —15.1 MPa E—
Figure 99: Problem 3: The element.
Ty = +7.55 MPa
Oy + 0 —15.1
Oave = — 5 J = 52 0 Mpa = —755 MPa

Hence, the center of the circle is at (0aye,0) =
consider two points X and Y with coordinates

X : (=15.1,—7.55)
Y : (0,7.55)

(—7.55,0). Also,

15.1 MPa



(—7.55,10.68)

Tmax = R = 10.68

Lo
o
D~
(—18.23,0) (—7.55,0) 45° ‘

150 j135° (3.13,0) o

: 755

X

(—15.1,—7.55)
(—7.55,—10.68)
i R =10.68 |

Using the (red) shaded right-angled triangle, the radius of the
Mohr’s circle

R? = (7.55)% 4 (7.55)?

= R=/(755)2 + (7.55)2 = 10.68
Hence, the principal stresses are

Omax = Oave + R = —7.55+10.68 = 3.13 MPa
Omin = Cave — R = —7.55 —10.68 = —18.23 MPa

The maximum in-plane shear stress, Tmax = R = 10.68 MPa.

Figure 100: Problem 6: Mohr’s circle.

67.5°

3.13 MPa

225°
18.23 MP\

Figure 101: Problem 6: Principal
stresses.



Problem 7.

Find maximum Ty, such that Tmax < 15 MPa for the element shown.

15.1 MPa

5

Figure 102: Problem 7.

(—22.55,0)

Figure 103: Problem 7: Mohr’s circle.
Here, we have
oy = —15.1 MPa
Txy

oxtoy _ 15140 4 p 255 MPa
2 2 :

Hence, the center of the circle is at (0ave,0) = (—7.55,0). Also,
consider two points X and Y with coordinates

Jave =

X: (151, —1yy)
Y : (0, 7yy)
Given Tmax = 15 MPa = R (maximum possible).
Using the shaded right-angled triangle
R* = 13, + (7.55)
(15)% = 73, + (7.55)°
= Tyy = 12.96 MPa

Hence, maximum Ty = 12.96 MPa will give Tmax = 15 MPa.



Problem 8.

Find maximum ¢ such that thax < 15 MPa for the element shown.

7.55

Figure 104: Problem 8.

Here, we have

Oy = —0

o, =0
Tyy = +7.55 MPa

oy + 0 —oc+0
Oave = x2 y: > :—(7/2

Hence, the center of the circle is at (0ave,0) = (—0/2,0). Also,
consider two points X and Y with coordinates

X:(—0/2,—7.55)
Y : (0,—7.55)

Given Tmax = 15 MPa = R (maximum possible).
Using the shaded right-angled triangle

R? = (7.55)% + (¢/2)?
(15)% = (7.55)%* + (07/2)?
= 0/2=1296 MPa
= 0 =2592 MPa

Hence, maximum ¢ = 25.92 MPa will give Tmax = 15 MPa.

Figure 105: Problem 8: Moht’s circle.



Deflection of Beams

Equation of the Elastic Curve

The governing second order differential equation for the elastic curve
of a beam deflection is

d?y
EI@ =M

where EJ is the flexural rigidity, M is the bending moment, and y is
the deflection of the beam (+ve upwards).

Boundary Conditions

Fixed at x = a:

Deflection is zero = y =0
X=a
dy
Sl i = = =0
ope is zero Tx ey
Simply supported at x = a:
Deflection is zero = y =0
X=a

A fourth order differential equation can also be written as

dty

where is w is the distributed load.
Here, two more boundary conditions are needed in terms of
bending moment and shear force.



Boundary Conditions

Free at x = a:

2
Bending moment is zero = M = EI % =0
X X=a
d3y
Shear force is zero = V = EI -3 =0
dx
X=a
Simply supported at x = a:
d2y
Bending moment is zero = M = EI Frl =0
X X=a
Notes on Integration
/.(ax +b)dx = /axdx + /bdx +C
2
= i + bx + C1
2
ax? ax?
/ (2 +bx+C1> dx = /de+/bxdx+/C1dx+C2
ax3  bx?
= ? + 7 + C1x + C2

Problem 1.

Calculate the tip deflection for the cantilever beam shown below.

P

Bending moment

Figure 106: Problem 1.



d?y
EI@ — — —Px
d Px?
El % = —Tx +C; [integrating with respect to x] P
Px® . . . .
Ely = — v + Cix+C,  [integrating again with respect to x]
M
Use boundary condition dy/dx =0and y = 0 at x = L. I | l >
* . t v
d]/ —0 Figure 107: Problem 1: Free-body
E - diagram.
x=L
PL?
Ci=—
= (q 5
y =0
x=L
pL?
PL3
= C=——
2 3

Hence, the equations of the deflection and slope becomes

1 ( Px® PL>x PI3
y151<_6+ 2 ‘3>
dy 1 ( Px2+PL2>
dx  EI 2 2

The tip deflection and the rotation

__pr?

Y T T3EI
x=0

dy| _ PL?

dx T 2EI
x=0

Problem 2.

Calculate the maximum deflection for the beam shown.
The support reactions are

Ay =By =P/2

0<x<L/2
Bending moment



—— x

A :I: B
7 I 77
ke L
1 1
Ay T TBy
Hence,
d?y Px
Haa =M=
P2
El Z—Z = Tx +C; [integrating with respect to x]

P 3
Ely = 1—); +Cix+Cy [integrating again with respect to x]

Use boundary condition y = 0 at x = 0.

G =0
L/2<x<L:
Bending moment
P(L —x)
M =
2
Hence,
d?y P(L—x) PL Px
Hpe=M="% =272
dy PLx Px?
o) A C; [integrating with respect to x]
dx 2 4
PLx* Px®
Ely = 4x - % + C3x +C4 [integrating again with respect to x]

Use boundary condition y = 0 at x = L.

P13 pI3
3
corcy= Y

Now, use compatibility condition that deflections and slopes from
both these equations at x = L/2 should match.

Figure 108: Problem 2.

| IBE

2 x Y
1 TV
Ay = P/2

Figure 109: Problem 2: For 0 < x <
L/2.

L L—x
1 7
By =P/2

Figure 110: Problem 2: For L/2 < x <
L.



Or, due to the symmetry of the problem slope at x = L/2 should
be zero, i.e., dy/dx = 0 at x = L/2. From the equation for the first

half of the beam
dy PL?
EI =g tC1=0
x=L/2
PL?
= G="7¢

Similarly, from the equation for the second half of the beam

dy pPL?>  PL?
Bl I
x=L/2
3pL?
Cy=—
- 3 16
PIL3 PI3
= — —CL = —
= C4 3 C3 T

Hence, the equations of the elastic curve

g # (%8 - B for 0 < x < L/2
1 Px3 | PLx®> 3PL? PL3
ﬁ<_%+ 4x - 16x+@ fOI'L/ZSXSL)

Hence, maximum deflection at the midspan

= PL’ — PL’ =— PL? [using the first equation]
Y T 96EI  32EI  48EI Sing the first equatio
x=L/2
Ylmax = 4gF]
pr® pr® 3pr3  PI3 pr3
h : = — — [ : h .
Check: y 96E] + 16EI  32EI + 18E] 18E] [using the second equation]
x=L/2
Slope at the left end
dy| _ _PL*
dx ~ 16EI
xX=
Slope at the right end
dy _ P12
dx - 16EI
e

Problem 3.

Calculate the maximum deflection for the beam shown.



wo =5 KN/m

L=10m .

We will convert all units to N and m. So, our y will be in m.
The vertical support reactions are Ay = B, = wygL/2 = 25 kN.
Bending moment at a distance of x from left end

M = —(5000x) - (g) + 25000

= —2500x + 25000x

Hence,

42
E1%L = M = —2500x2 4 25000x

dx?

3
El Z—Z = - 25030x +12500x* + C;  [integrating with respect to x]
4 3

Ely = — 2500x + 12500x + Cix+Cy [integrating again]

12 3

Use boundary conditions y =0 atx =0and x = L = 10 m.

yp =0
= C =0

y =0
x=10 m
2500 - (10)* N 12500 - (10)3
12 3
C; = —208.33 x 10°

+Cp-(10) =0

Hence, the equations of the elastic curve and the slope of the curve

Y= FI 12 3
dy _ 1 ( 2500x°
dx  EI 3

1 2500x*  12500x3
(— T2t —(208.33><103)x>

+ 12500x% — 208.33 x 103)

Figure 111: Problem 3.

(5 x 10%) 5000x N

wyg =5KN/m

-
¥

Y Y Y A\ \4 \

NAy =25kN

Figure 112: Problem 3: Free-body
diagram.



Maximum deflection at the midspan

_ 65104 x 10°
Y - El
x=5m
651.04 x 103 SwL*
= | lmax = —5; = 384E]

Problem 4.

Calculate the maximum deflection at the tip for the beam shown.

We will convert all units to N and m. So, our y will be in m.

Figure 113: Problem 4.
wo =10 KN/m
A VVQ
— x \
L L=5m L
1 7
Bending moment 2(2x)x = 2 KN =1000* N
' w= "% =2xKN/m
M = 100022 £ = 1000 :
N 3 3

Hence,

| IDE

3

x/
By 10003 — v

EI-2 =M=

dx? 3 k X }
EI dy _ 2501 4+ C; [integrating with respect to x] Figure 114: Problem 4: Free-body
dx 3 1 & & P diagram.

50x°
Ely = — Tx +Cix+ G, [integrating again with respect to x]



Use boundary conditions dy/dx =0and y =0atx =L =5m.

x=5m

250 - (5)*

2 4G =0

3
= (C; =52.083 x 10°

y =0

x=5m
50 - (5)°

3

C, = —208.33 x 103

+C1'(5)+C2:0

Hence, the equations of the elastic curve and the slope of the curve

1 5

y=— o0, (52.083 x 10%)x — —208.33 x 10°
EI 3

dy 1 250x* 3

%75 ( 3 +52.083><10

Maximum deflection at the tip

~208.33 x 10°
- EI
x=0
208.33 x 10 | woL*
= | [Ylmax = =7 = 30EI

Problem 5.

Estimate the deflection curve for the beam shown.

wo

L/2

N
-~ =S

— Av S
—+ P
NI

Figure 115: Problem 5.



Using the equations for equilibrium

Y F,=0

Y Ma=0
wl L _ wol?

L
.wo-§:7

N =

By l=" 312
ZU()L
= B, = —
Y12
ZU()L ZU()L ’woL
A = — =
TNT T T2 T
0<x<L/2
Bending moment
wox? x  wylx
M= — it
L 3 6
_ wolx B wox>
6 3L
Hence,
2 3
Eld—y M= woLx  wox

dx? 6 3L
4

dy  wolx®>  wox . . .
EI = T oL +C; [integrating with respect to x]
Ely = woLx® — wpx® +Cix+C [integrating again]
y= 36 60L 1 2 g g ag
L/2<x<L:

Bending moment

ZUQL
M=———(L-
15 ¢ )
_ wol?  wplx
12 12
Hence,
d’y wol?  woLx
EI=— =M= -
dx? M 12 12
d L2 Lx?
EI% = wolz X w024x +C3  [integrating with respect to x]
L2 2 L 3
Ely = Wo- X7 Wolx +C3x+ C4  [integrating again]

24 72

L
TAy_wg

Figure 116: Problem 5: For 0 < x <
L/2.

L
1 1

T

B, =P/2

Figure 117: Problem 5: For L/2 < x <
L.



Use boundary conditions y = 0 at x =0 and x = L.

yp =0

x=0
= C =0

yp =0

x=L

'LUOL4

= CGL+Cy=—

3L+ Cy 36

Next, use the compatibility condition that at x = L/2 deflection
and slope from both of these expressions should match.

Elly =El|y
x=L/2/ expression 1 x=L/2/ expression 2
wol L3  wy L° L  wol? L[* wolL L3 L
ek U I g Mt Rl e N o NI g
¥ 36 8 6oL 2 TN 2T a i gty th
17wol* CiL 11wgl* CsL woL?*
—_— = - Cy=— — G3L
~ 5760 2 576 2 36~ O3
N GL _ 127wyl*  GL
2 5760 2
127w, L3
= Cl + C3 - —W
EI d—y =EI d—y
x=L/2/ expression 1 x=L/2/ expression 2
wol L2 wy L* wol? L wol L2
= — . — — — . (= — - C
TSR TS TR B R B TRl S
ZUoL3 o ZU()L3
= o4 +C = 2 +Cs
w0L3
= C—C3=
1 3 o4
Solving for C; and Cj gives
41wyL3
Cr=— s
2880
_ 43wpL?
e VYT
w0L4
Cy =
AR
Hence, the equations for the elastic curve
1 Ly® 5 4lwyL®
. (S - % — L) for 0 < x < L/2
- 2.2 4
B (M - - U ) forL/2<x<L



Method of Superposition

Method of superposition can be used if you have two or more loads
acting on the beam.

Problem 6.

Estimate the deflection of the beam as shown.

P Figure 118: Problem 6.
wWo
Y A \ Y A A WQ
N\
=
ke L l
1 7
Using method of superposition combine results from the following
two cases:
P Figure 119: Problem 6: Method of
superposition.
U+
Y A \ Y “
| |
L L/2
+ + —
For the first case:
Figure 120: Problem 6: Case I
wo
Y \4 Y A

-
g




We will use the fourth order governing differential equation.

EIZI% = —w = —wWy
= 51% = —wox + C;
= EI% :—wOTxZ—i—Clx—irCz
N EI% _ _w%x3 C12x2 L Cox + Gy
- Ely— _wgf C16x3 szxz GGy

Use boundary conditions dy/dx = 0andy = Oatx = L and

2
bending moment M = EI ZTZ = O atx = 0 and shear force V =

3
EIYY —0atx = 0.

ax3
d3y
V =El— =
dx3 0
xX=
= C;=0
d2y
M =EI—= =0
dx2
x=0
= C =0
dy
P =0
x=L
ZU(]L3
= C3 =
T 6
Y =0
x=L
ZUQL4 -
o1 +CL+Cs=0
o w0L4 w0L4 . ZUOL4
= Q= 6 8

Hence, for the first case




For the second case:

p
N
|
L/2
—_
0<x<L/2
Bending moment M = 0. Hence,
d?y
El——5 =M=
dx? 0
dy . . .
El T C; [integrating with respect to x]
Ely = Cix+Cy [integrating again]
L/2 <x <Lt

Bending moment
M= —-P(x—L/2)

Hence,

[ G VI L
ax2 2
d Px? PL

EI @4 _ + = +C3 [integrating with respect to x]
dx 2 2

Px3  PLx?
Ely = _Tx + 4x +C3x+C4  [integrating again]

Use boundary conditions dy/dx =0and y = 0 at x = L.

dy
o =0
x=L
PL?2  PpL?
- Ty Py =0
= C3=0
y =0
x=L
pI3 pL3
=>—T+T+C4—O
PI3
= Q=9

Next, use the compatibility condition that at x = L/2 the slope and

Figure 121: Problem 6: Case II

| IDE

L X |

1 TV
Figure 122: Problem 6, Case II: For
0<x<L/2

| L/2 Y v
1 7

| x Y

1 7

Figure 123: Problem 6, Case II: For
L/2<x<L.



the deflection should match.

dy

dy
ET( = —EI

x=L/2/ expression 1 x=L/2/ expression 2

e Pz P

T a=g TR
El|y =Elly
x=L/2/ expression 1 x=L/2/ expression 2
= %JrCz:*ITTI;ﬁLPlij%»Q;
pL3
= Q= _548

Hence, for the second case, the equations for the elastic curve

% PL;"—% for0<x<L/2
y:
B (-B2+ 22 - 22) forL/2<x<L

Combining case I and II, the elastic curves for the original beam

% (_wgf " woé3x . w%L4 n PL82x _ %) for0<x<L/2
T A (et e ) for L/2<x<L
The tip deflection and rotation
_ wol* 5PL?
Y| T T8ET 48

x=0

R

dx|  6EI  8EI
x=0

Statically Indeterminate Beams

Clever use of superposition can be utilized here.

Problem 7.

Calculate the support reaction Ay here.

Method I:

Let us use the method of superposition and divide the problem
into the following two cases.

From Problem 5, the deflection for the first case

1 _w0x4 woL3x ~ wplL?
Y=Er\" 2 6 8



wo
Y Y Y A 4 A 4 A 4
= \
X
A : B
707
k L I3
1 7
o+ X
\ 4 \ 4 \4 T l\
N
| k Ay

Hence, the tip deflection in this case

_wOL4
8EI

y

x=0
For the second case, use the result from Problem 1. The tip deflec-
tion in this case
A L3
~ 3EI

y

x=0
However, due to the presence of the roller support at A, the deflec-
tion at A should be zero. This leads to

AL wlt
3EI  8EI
3ZUOL
A pr—
y 8

Method II: Assume the unknown reaction at A as A, and calculate
the bending moment as follows:
Bending moment at a distance of x from left end

M = —(wpx) - (%) + Ayx

= — w02x2 + Ayx
Hence,
H%%:A4:—W?Z+Aﬂ
EI % = — w%x?’ Ayz x? +C; [integrating with respect to x]
Ely = — w0x4 + AyX3 + Cix 4+ Cy  [integrating again]

24 6

Figure 124: Problem 7.

Figure 125: Problem 7: Method of
superposition.

wWoXx

wo

R

<

x/2

o
N
S

L
|

Figure 126: Problem 7: Free-body
diagram.



Use boundary conditions y = 0at x = 0 and dy/dx = 0,y = 0 at
x=L.

y =0
x=0
C =0
dy
dx =0
x=L
wol® = AyL? B
= 6 5 +Ci=0
_wl®  AyL?
= C1 B 6 72
y =0
x=L
wol* AL
J— L p—
= 21 6 +CiL+C, =0
wol* A L3 wol* AL
T T u T e 2 =0
3w0L
A, ==
Problem 8.

Calculate the support reaction at A.

y wo =10 KN/m
A ‘§
N\
—— x
A B
7777
L L=5m L
1 7

Using method of superposition this problem can be divided into
two cases.

From Problem 4, the tip deflection for case I

_wol* 20833 x10°
Y| T TRl T El

Figure 127: Problem 8.



+ Figure 128: Problem 8: Method of
superposition.

S
o
[ —
Tr7

From Problem 1, the tip deflection for case II

3
_ AL 41674,

© 3EI EI

x=0

y

However, due to the presence of the roller support at A, the deflec-
tion at A should be zero. This leads to

41.67A, 20833 x 10° _
EI EI B
A, =5000 N =5 kN

0



Moment-Area Method

First moment-area theorem

_lml
fr ¢ D

Fe

0p,/c = area under M/EI diagram between C and D
XD M

91) _GC = . ﬁdx

Second moment-area theorem

Tangential deviation fc,p of C with respect to D
tc/p = (area between C and D)%
Tangential deviation tp /- of D with respect to C

tp/c = (area between C and D)%,

Problem 9.

Find the tip deflection and rotation of the beam.

Figure 129: Moment area theorem.

Figure 130: Moment area theorem.



M Figure 131: Problem 9.
N =8 T I
B A

=ty L/ — A

Step I: Draw the reference tangent

Sq Figure 132: Problem 9: Reference
tangent.
i oA \
¥

Reference
tnngu{;

Step II: Draw the M/EI diagram

iﬂ Figure 133: Problem 9: M/EI diagram.
I

A, M
i ﬁ‘*; 2F1

-,
e %, —

Step III: Use the first theorem

Step IV: Use the second theorem

tp/a = A1X1 + AxX

= (aer) () + (&21) - (%)

_ ML?  3ML?

= BEI ' T6EI
5y — 5ML?
16EI

Problem 10.

Find the tip deflection and rotation using moment-area theorems.



We

A B c
le—L, A< L=

Step I: Draw the reference tangent

Reference. ‘oigert

T
—\ +te/p
t 6e

Step II: Draw the M/EI diagram

Step III: Use the first theorem

To use the first theorem first divide the M/EI digram into 3 ele-

Figure 134: Problem 10.

Figure 135: Problem 10: Reference
tangent.

Figure 136: Problem 10: M/EI diagram.



mentary areas Aq, Ay, and Aj.

[ —woL? L
Al_( 8EI ) <2>
7w0L3

16E1

_ 2
4y L. (22wl (L
2 8EI 2
7_ZU0L3
~ 16EI

1 [ —wyl? L
A3_3'< 8EI )(2)
o _ZUOL3
~ 48EI

Next, using the first theorem

OC/A = A1+ Ay + Aj

o 7ZU0L3
= bc=0=""g5F7
7woL3 .
= 0c = “1BEL (Clockwise)

Step IV: Use the second theorem
First, calculate the distances ¥4, X, and x3.

_ L L
X1:§+Z
%

N‘P‘H;
+

WIN

N

W N~ Q1
SRR
o]

8
Next, using the second theorem

tc/a = A1X1 + Axxy + A3zX3

[ —woL3 5L —wyL3 3L —wyL3 3L

_< 16EI >'(6)+( 16EI >'(4>+( 48E1 )'(8)
41wyL3

 384EI







