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Review of Statics

• Addition of a system of coplanar forces

– Scalar notation:

Fx = F cos(θ)

Fy = F sin(θ)

Figure 1: Force addition.

– Cartesian vector notation:

−→
F = Fx î + Fy ĵ

• Force resultants

(
+→) FRx = ∑ Fx

(+↑) FRy = ∑ Fy

FR =
√

F2
Rx + F2

Ry

θ = tan−1
∣∣∣∣ FRy

FRx

∣∣∣∣
• Cartesian vectors

−→
A = Ax î + Ay ĵ + Az k̂

A =
√

A2
x + A2

y + A2
z

cos α =
Ax

A
, cos β =

Ay

A
, cos γ =

Az

A

Figure 2: Cartesian unit vectors.

• Unit vector

−→u A =

−→
A
A

=
Ax

A
î +

Ay

A
ĵ +

Az

A
k̂

= cos α î + cos β ĵ + cos γ k̂

cos2 α + cos2 β + cos2 γ = 1



• Addition of Cartesian vectors

−→
F R = ∑

−→
F = ∑ Fx î + ∑ Fy ĵ + ∑ Fz k̂

• Position vector

−→r = x î + y ĵ + z k̂
−→r = −→r B −−→r A

= (xB − xA) î + (yB − yA) ĵ + (zB − zA) k̂

Figure 3: Position vector.

• Force vector directed along a line

−→
F = F−→u = F

−→r
r

= F

(
(xB − xA) î + (yB − yA) ĵ + (zB − zA) k̂√
(xB − xA)2 + (yB − yA)2 + (zB − zA)2

)

• Dot product

Figure 4: Dot product.−→
A · −→B = AB cos θ = AxBx + AyBy + AzBz

θ = cos−1

(−→
A · −→B

AB

)
−→
F · −→u = F

• Condition for the equilibrium

∑
−→
F =

−→
0

∑ Fx = 0; ∑ Fy = 0; ∑ Fz = 0.

• Moment
MO = Fd

Figure 5: Moment.

• Cross product

−→
C =

−→
A ×−→B =

∣∣∣∣∣∣∣
î ĵ k̂

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣
= (AyBz − AzBy) î− (AxBz − AzBx) ĵ + (AxBy − AyBx) k̂

−→
MO = −→r ×−→F =

∣∣∣∣∣∣∣
î ĵ k̂

rx ry rz

Fx Fy Fz

∣∣∣∣∣∣∣



−→r : position vector from O to any point on the line of action of the
force.

• Resultant moment of a system of forces

−→
MRO = ∑−→r ×

−→
F

Figure 6: Resultant Moment.

• Principle of moments

−→
MO = −→r ×−→F = −→r ×

(−→
F 1 +

−→
F 2

)
= −→r ×−→F 1 +

−→r ×−→F 2

MO = Fxy− Fyx

• Moment about a specified axis

– Scalar analysis: Ma = Fda

– Vector analysis:

Ma =
−→u a ·

(−→r ×−→F )
=

∣∣∣∣∣∣∣
uax uay uaz

rx ry rz

Fx Fy Fz

∣∣∣∣∣∣∣
−→
Ma = Ma

−→u a

Figure 7: Moment about a specified
axis.• Moment of a couple

−→
M = = −→r B ×

−→
F +−→r B ×

(
−−→F

)
=
(−→r B −−→r A

)
×−→F

= −→r ×−→F
M = Fd

Figure 8: Couple system.



• Concurrent force system
−→
F R = ∑

−→
F

Figure 9: Concurrent force system.

• Coplanar force system

−→
F R = ∑

−→
F

−→
MRO = ∑−→r ×

−→
F

d =
MRO

FR

Figure 10: Coplanar force system.

• Reduction of a simple distributed loading

wind pressure

water pressure on the bottom of a tank or side of a tank

Magnitude:

+ ↓ FR = ∑ F, FR =
∫ x=L

x=0
w(x)dx =

∫
A

dA = A

Figure 11: Distributed loading.

Location:

+ x MRO = ∑ MO

x̄ =

∫ x=L
x=0 xw(x)dx∫ x=L
x=0 w(x)dx

=

∫
A xdA∫
A dA

= centroid of the area

Figure 12: Equivalent loading.

• Equations of equilibrium

∑
−→
F =

−→
0

∑
−→
MO =

−→
0

In 3D:

∑ Fx = ∑ Fy = ∑ Fz = 0

∑ Mx = ∑ My = ∑ Mz = 0



Concept of Stress & Strain

Axial Loading

Normal Stress

Consider a two-force member subjected to axial loading as shown in
Figure 13. The normal stress developed in the member is given by

σ =
P
A

Figure 13: Axially loaded member with
cross-sectional area A.

This is the average stress over the cross-section. Stress at a particu-
lar point in the cross-section is defined as

σ = lim
∆A→0

∆F
∆A

where ∆A is small area around the point and ∆F is the internal force
in that area. In general,

P =
∫

dF =
∫

A
σdA

Normal Strain

The strain is defined as

ε =
δ

L

where δ is deformation of the member. Strain at a given point is

ε = lim
∆x→0

∆δ

∆x
=

dδ

dx
(1)

Hooke’s Law

For the initial portion of the stress-strain plot (up to the elastic limit)
stress is proportional to strain and the proportional constant is
known as modulus of elasticity (E).

σ = Eε



Deformation

Using Hooke’s law

δ = εL =
( σ

E

)
L =

PL
AE

If the material property, cross-section, or the axial load changes over
the length a few times total deformation is given by

δ = ∑
i

PiLi
AiEi

In general, for varying cross-section or material properties over the
length

δ =
∫ L

0

Pdx
AE

Factor of Safety

The factor of safety is defined as

F.S. =
ultimate load

allowable load

In terms of stress

F.S. =
ultimate material strength (stress)

allowable stress

Problem 1.

For the bar shown in Figure 14 determine normal stresses in different
parts. Assume the diameters as dAB = dCD = 20 mm, dBC = 40 mm.

Using the free body diagram in Figure 14, FAB = 10 kN, FBC = 26
kN, and FCD = 21 kN.

The cross-sectional areas are AAB =
πd2

AB
4 , ABC =

πd2
BC

4 , and

ACD =
πd2

CD
4 .

Hence, the normal stress in different parts

σAB =
FAB
AAB

=
10× 103

π(0.02)2/4
= 31.83 MPa

σBC =
FBC
ABC

=
26× 103

π(0.04)2/4
= 20.69 MPa

σCD =
FCD
ACD

=
21× 103

π(0.02)2/4
= 66.85 MPa



Figure 14: Problem 1.

The deformation in different parts

δAB =
FABLAB
AABE

=
10× 103 × 0.5

π(0.02)2

4 × 70× 109
= 0.23 mm

δBC =
FBCLBC
ABCE

=
26× 103 × 0.75

π(0.04)2

4 × 70× 109
= 0.22 mm

δCD =
FCDLCD
ACDE

=
21× 103 × 0.5

π(0.02)2

4 × 70× 109
= 0.48 mm

Total deformation of the member δ = δAB + δBC + δCD = 0.93 mm.

Problem 2.

Determine the maximum weight that can be used where the max-
imum allowable stress in the cable is 10 MPa. The diameter of the
cables is 10 mm.



Using the free body diagram

+→∑ Fx = 0 ⇒ − FAB cos 60 + FBC

(
4
5

)
= 0

FBC

(
4
5

)
= FAB/2

FAB = 1.6FBC

+ ↑∑ Fy = 0 ⇒ FAB sin 60 + FBC

(
3
5

)
−W = 0

(1.6FBC)

√
3

2
+ FBC

(
3
5

)
−W = 0

1.986FBC = W

FBC = 0.504W

FAB = 1.6FBC = 0.806W

Figure 15: Problem 2.

Hence,

σAB =
FAB
A

=
0.806W

π(0.01)2/4
= 10262.3W < σallow = 10× 106

This gives

W <
10× 106

10262.3
= 974.4N

Maximum mass allowed, m = W/g = 974.4/9.81 = 99.33 kg.

Problem 3.

Determine the cross-sectional area required for member DF if
σallow = 120 MPa.

We need to calculate the support reactions first:

+→∑ Fx = 0 ⇒ Ax − (1000 kN) ·
(

4
5

)
= 0

⇒ Ax = 800 kN

+↑∑ Fy = 0 ⇒ Ay + Gy − (1000 kN) ·
(

3
5

)
= 0

⇒ Ay + Gy = 600 kN

+ x ∑ MA = 0 ⇒ Gy · (6 m) + (1000 kN) ·
(

4
5

)
· (2.5 m)

− (1000 kN) ·
(

3
5

)
· (5 m) = 0

⇒ Gy = 166.67 kN, Ay = 433.33 kN



Figure 16: Problem 3.

To estimate the force in member DF consider a section a− a′.

+ x ∑ ME = 0 ⇒ − FDF · (1 m)− (433.33 kN) · (4 m)

+ (800 kN) · (1.5 m) = 0

⇒ FDF = 533.33 kN

Figure 17: Section a− a′.

Hence, the cross-sectional area required

ADF =
FDF

σallow
=

533.33× 103 N
120× 106 N/m2 = 4.44× 10−3 m2 = 444 mm2



Problem 4.

Determine the deformation of a bar under its own weight. What is
the equivalent load at the end of the bar that can replace the self-
weight?

Figure 18: Problem 4.

Consider the deformation of an element of length dz. The weight
acting on it is

P = ρgA(L− z)

where ρ = density of the bar; A = cross-sectional area; g = gravita-
tional acceleration. Hence, the deformation of the element

dδ =
Pdz
AE

=
ρgA(L− z)dy

AE
Total deformation of the bar

δ =
∫ L

0

ρg
E
(L− z)dz

=
ρg
E

∫ L

0
(L− z)dz

=
ρg
E
(L2 − L2/2)

=
ρgL2

2E

Equivalent force at the end

σA

=(Eε)A

=E
δ

L
A

=
EρgL2 A

2EL

=
1
2

ρgAL = W/2

where W is the total weight of the bar.

Problem 5.

Determine the deformation at point C. Assume the bar ACD is rigid.

Figure 19: Problem 5.

∑ Fy = 0

⇒ FAB + FDE = 45 kN

∑ MD = 0

⇒ − FAB · (0.6 m) + (45 kN) · (0.4 m) = 0

FAB = 30 kN

FDE = 15 kN



δAB =
FABLAB
EAB AAB

=
(30× 103 N) · (0.3 m)

(200× 109 Pa) · (π(0.012) m2)

= 143× 10−6 m

= 0.143 mm

δDE =
FDELDE
EDE ADE

=
(15× 103 N) · (0.3 m)

(70× 109 Pa) · (π(0.022) m2)

= 51× 10−6 m

= 0.051 mm

δC = δDE + (δAB − δDE) ·
(

0.4 m
0.6 m

)
= 0.113 mm

Statically Indeterminate Problems

In these problems, equations of equilibrium are not enough to solve
all the reactions. Hence, equations for compatibility are required.

Problem 6.

Consider the rod made of an outer layer with material 1 (E2 = 90
GPa) and a core with material 1 (E1 = 45 GPa). It is subjected to
P = 70 kN. Calculate the stresses developed in each component of
the rod.

Figure 20: Problem 6.

Equation of Equilibrium: The total load P is carried by both
materials. If P1 is the load carried by material 1 and P2 is the load
carried by material 2

P = P1 + P2 = 70 kN

Equation of Compatibility: Further, the deformations of both
materials should be same.

δ = δ1 = δ2

⇒ P1L
E1 A1

=
P2L

E2 A2

⇒ P1 = P2

(
E1

E2

)(
A1

A2

)
⇒ P1 = P2 ·

(
90
45

)
·
(

π(0.042 − 0.022)

π(0.022)

)
⇒ P1 = P2 · (2) · (3)
⇒ P1 = 6P2



Hence, P1 = 60 kN, P2 = 10 kN and

σ1 =
P1

A1
=

60× 103

π(0.042 − 0.022)
= 15.91 MPa

σ2 =
P2

A2
=

10× 103

π(0.022)
= 7.96 MPa

Problem 7.

Determine the support reactions in the shown statically indetermi-
nate structure. AC has E = 50 GPa and CD has E = 100 GPa.

Figure 21: Problem 7.

Equation of Equilibrium:

+ ↑∑ Fy = 0

RA + RD = 50 kN + 100 kN = 150 kN

Equation of Compatibility:
Assume the reaction at D is redundant and δL = deformation due



to the load; δR = deformation due to the reaction. Hence,

δ = δL + δR = 0

δL = δB + δC + δD

= − (50× 103 N) · (0.5 m)

(50× 109 Pa) · (π(0.022) m2)
− (100× 103 N) · (1 m)

(50× 109 Pa) · (π(0.022) m2)
= −1.99× 10−3 m

δR =
(RD) · (0.5 m)

(100× 109 Pa) · (π(0.012) m2)
+

(RD) · (1 m)

(50× 109 Pa) · (π(0.022) m2)
= 3.183× 10−8RD

⇒ RD =
1.99× 10−3

3.183× 10−8 = 62500 N = 62.5 kN

⇒ RA = 150 KN − RD = 87.5 KN

Problem 8.

Solve the same problem as before but allowing a 1 mm gap for the
deformation of the bar as shown in the figure.

Figure 22: Problem 8.

Equation of Equilibrium:

+ ↑∑ Fy= 0

RA + RD = 50 kN + 100 kN = 150 kN

Equation of Compatibility: δL = deformation due to the load;
δR = deformation due to the reaction. Hence,

δ = δL + δR = −1× 10−3 m

δL = δAB + δBC + δCD

= − (50× 103 N) · (0.5 m)

(50× 109 Pa) · (π(0.022) m2)
− (100× 103 N) · (1 m)

(50× 109 Pa) · (π(0.022) m2)
= −1.99× 10−3 m

δR =
(RD) · (0.5 m)

(100× 109 Pa) · (π(0.012) m2)
+

(RD) · (1 m)

(50× 109 Pa) · (π(0.022) m2)
= 3.183× 10−8RD

⇒ RD =
1.99× 10−3 − 1× 10−3

3.183× 10−8 = 31250 N = 31.25 kN

⇒ RA = 150 KN − RD = 118.75 kN

Problem 9.

Determine the stresses developed in members BE and CF (E = 70
GPa, radius = 20 mm). Assume the bar ABCD is rigid.

Equation of Equilibrium:

∑ Fx = 0

⇒ Ax = 0

∑ MA = 0

⇒ FBE · (0.5 m) + FCF · (1 m) = (100 kN) · (1.5 m)

⇒ FBE + 2FCF = 300 kN



Figure 23: Problem 9.

Equation of Compatibility:

2δB = δC

⇒ 2FBELBE
EBE ABE

=
FCFLCF
ECF ACF

⇒ 2FBE · (0.5 m)

(70× 109 Pa) · (π(0.022) m2)
=

FCF · (0.5 m)

(70× 109 Pa) · (π(0.022) m2)

⇒ 2FBE = FCF

Hence,

FBE = 60 kN, FCF = 120 kN

σBE =
FBE
A

=
60× 103 N
π(0.022) m2 = 47.75× 106 Pa = 47.75 MPa

σCF =
FCF
A

=
120× 103 N
π(0.022) m2 = 95.5× 106 Pa = 95.5 MPa



Problem 10.

Three cables are attached as shown. Determine the reactions in the
supports.

Assume RB as redundant. Also, LAD = LCD = 1 m
cos 60◦ = 2 m.

Equation of Equilibrium:

+ ↑∑ Fy = 0

⇒ RA · cos 60◦ + RB + RC · cos 60◦ = 100 kN

⇒ RA ·
(

1
2

)
+ RB + RC ·

(
1
2

)
= 100 kN

⇒ RA + 2RB + RC = 200 kN

⇒ 2RA + 2RB = 200 kN [using symmetry RA = RC]

⇒ RA + RB = 100 kN

Figure 24: Single and double shear.
Equation of Compatibility:
To compute the downward (-ve) deformation (δL) due to the

external load (in this case we do not have any force in the member
BD)

+ ↑∑ Fy = 0

⇒ 2FAD cos 60◦ − 100 kN = 0 [using symmetry FAD = FCD]

⇒ FAD = 100 kN



Hence,

δL = − FADLAD
AE cos 60◦

= − (100 kN) · (2 m)

AE ·
(

1
2

) = −400 kNm
AE

Similarly, to compute the upward (+ve) deformation (δR) due
to the redundant reaction RB (in this case we have force RB in the
member BD)

δR =
RBLAD

AE cos 60◦
+

RBLBD
AE

=
RB · (2 m)

AE ·
(

1
2

) +
RB · (1 m)

AE

Using the equation of compatibility

δ = δL + δR = 0

⇒ − 400 kNm
AE

+
2RB · (2 m)

AE
+

RB · (1 m)

AE
= 0

⇒ RB =
400 kN

5
= 80 kN

⇒ RA = 100 kN − 80 kN = 20 kN = RC

Isotropic Material

The material properties are same in every direction.

Homogeneous Material

The material properties are same for every position.

Poisson’s Ratio

For the axially loaded member σx = P
A shown in the figure, even if

σy = σz = 0 here but εy, εz 6= 0 due to the transverse contraction.
The lateral strains are equal in this case for a homogeneous

isotropic material and a material constant, known as Poisson’s ra-
tio (ν), can be defined as

ν = − lateral strain
axial strain

= −
εy

εx
= − εz

εx

Using Hooke’s law (σx = Eεx)

εy = εz = −
νσx

E



Multiaxial Loading

Figure 25: Multiaxial loading.

For multiaxial loading the generalized Hooke’s law is given by

εx = +
σx

E
−

νσy

E
− νσz

E

εy = −νσx

E
+

σy

E
− νσz

E

εz = −
νσx

E
−

νσy

E
+

σz

E

Shearing Strain

Figure 26: Shear stresses and strains.

The shearing strain is defined as shown in the figure. Hooke’s law for
shearing stress and strain is

τxy = Gγxy τyz = Gγyz τzx = Gγzx

where G is the modulus of rigidity or shear modulus.

G =
E

2(1 + ν)

For a general stress condition in an isotropic linearly elastic mate-
rial the generalized Hooke’s law:

εx = +
σx

E
−

νσy

E
− νσz

E

εy = −νσx

E
+

σy

E
− νσz

E

εz = −
νσx

E
−

νσy

E
+

σz

E
τxy = Gγxy τyz = Gγyz τzx = Gγzx

We can write this in a matrix form



εx

εy

εz

γxy

γyz

γzx


=

1
E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)





σx

σy

σz

τxy

τyz

τzx





Inverting this equation



σx

σy

σz

τxy

τyz

τzx


=

E
(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2





εx

εy

εz

γxy

γyz

γzx



Single Shear and Double Shear

Figure 27: Single and double shear.

Problem 11.

A bolt of diameter 40 mm is tightened such that the decrease in its
diameter is 10 µm. Using the property of steel, E = 200 GPa and
G = 77.2 GPa determine the internal force in the bolt.

Given δy = 10 µm = 10× 10−6 m, d = 40 mm = 0.04 m.

ν =
E

2G
− 1 =

200
2× 77.2

− 1 = 0.2953

εy = −
δy

d
= −10× 10−6

0.04
= −2.5× 10−4

εx = −
εy

ν
= −−2.5× 10−4

0.2953
= 8.4660× 10−4

Hence, the internal force in the bolt

P = σA = (Eεx)

(
πd2

4

)
= (200× 106 Pa · 8.4660× 10−4) ·

(
π(0.04)2

4
m2
)

= 212.77 N



Problem 12.

The plate shown in the figure is subjected to biaxial loading. Com-
pute the change in length of the sides and the diagonal. Also, com-
pute the change in the angle ACB. Assume E = 200 GPa, ν = 0.29.

Figure 28: Problem 12.

Given σx = 100 MPa, σy = 0, σz = 120 MPa.
Using generalized Hooke’s law for multiaxial loading:

εx = +
σx

E
−

νσy

E
− νσz

E
=

100× 106 Pa
200× 109 Pa

− 0− 0.29× (120× 106 Pa)
200× 109 Pa

= 0.326× 10−3

εy = −νσx

E
+

σy

E
− νσz

E
= −0.29× (100× 106 Pa)

200× 109 Pa
+ 0− 0.29× (120× 106 Pa)

200× 109 Pa
= −0.319× 10−3

εz = −νσx

E
−

νσy

E
+

σz

E
= −0.29× (100× 106 Pa)

200× 109 Pa
− 0 +

120× 106 Pa
200× 109 Pa

= 0.455× 10−3

Hence, the changes in lengths

δAB = lABεx = (0.2 m) · (0.326× 10−3) = 0.0652× 10−3 m = 0.0652 mm

δBC = lBCεz = (0.2 m) · (0.455× 10−3) = 0.0910× 10−3 m = 0.0910 mm

The change in thickness

δt = tεy = (0.02 m) · (−0.319× 10−3) = −0.0064× 10−3 = −0.0064 mm

To estimate the change in length of the diagonal, first calculate the
length of the diagonal before deformation:

lAC =
√

l2
AB + l2

BC

The length of the diagonal after deformation√
(lAB(1 + εx))2 + (lBC(1 + εz))2



Hence, the change in length of the diagonal

δAC =
√
(lAB(1 + εx))2 + (lBC(1 + εz))2−

√
l2
AB + l2

BC = 0.1105× 10−3 m = 0.1105 mm

The change in angle ACB:

∆ tan θ =
lAB(1 + εx)

lBC(1 + εz)
− lAB

lBC

=
1 + εx

1 + εz
− 1

= −1.2894× 10−4

Relative change in the angle ACB = ∆ tan θ
tan 45◦ × 100% = −0.0129%.

The change in volume

∆V = V −V0 = (lAB(1 + εx) · lBC(1 + εz) · t(1 + εy))− (lAB · lBC · t)
≈ (lAB · lBC · t) · (εx + εy + εz)

= V0 · (εx + εy + εz)

= 0.3696× 10−6m3 = 369.6 mm3

Problem 13.

Determine the average shear stress in the pin (dia = 20 mm) at B.

Figure 29: Problem 13.

From the free-body diagram of ABC



∑ Fy = 0

By − (2000 N) = 0

By = 2000 N

∑ MB = 0

FCD · (0.1 m)− (2000 N) · (0.25 m) = 0

FCD = 5000 N

∑ Fx = 0

Bx − FCD = 0

Bx = FCD = 5000 N

Hence, the reaction in the pin RB =
√

B2
x + B2

y = 5385 N.
Since the pin is under double shear the shear stress in the pin is

τ =
1
2 RB
πd2

4

=
0.5× 5385 N

π(0.02)2

4 m2
= 8.57× 106 Pa = 8.57 MPa

The bearing stress in member ABC

σb =
RB
dt

=
5385 N

(0.02 m) · (0.01 m)
= 26.925× 106 Pa = 26.925 MPa

The bearing stress in the support

σb =
1
2 RB

dt
=

0.5× 5385 N
(0.02 m) · (0.005 m)

= 26.925× 106 Pa = 26.925 MPa

Stresses on Inclined Sections

Consider the axially loaded bar as shown in the figure. Compute the
stresses (σθ and τθ) on an inclined plane a− a′.

Sign Convention: Normal stress from tension is positive and shear
stress producing counter-clockwise rotation is positive.

Figure 30: Stresses on an inclined plane.

Using the above sign convention and the free-body diagram, we
can write

σθ =
N
Aθ

=
P cos θ

A
cos θ

=
P
A

cos2 θ = σx cos2 θ

τθ =
−V
Aθ

=
−P sin θ

A
cos θ

= − P
A

cos θ sin θ = −σx cos θ sin θ

Hence,

σθ = σx cos2 θ =
σx

2
(1 + cos 2θ)

τθ = −σx cos θ sin θ = −σx

2
sin 2θ



Problem 14.

Determine the stresses developed on the inclined plane a− a′.

Figure 31: Problem 14.

The axial stress developed in the bar

σx =
P
A

=
100× 103 N

0.004 m2 = 25× 106 N/m2 = 25 MPa

Hence,

σθ =
σx

2
(1 + cos 2θ) =

25 MPa
2

(1 + cos 60◦) = 18.75 MPa

τθ = −σx

2
sin 2θ = −25 MPa

2
sin 60◦ = −10.825 MPa

For a block on the plane a− a′ the complete stress diagram is shown
below.

To obtain this use the following:
side a− a′: Substitute θ = 30◦ to estimate σ30◦ and τ30◦ .
side b− b′: Substitute θ = 30◦ + 180◦ = 210◦ to estimate σ210◦ and
τ210◦ .
side a− b: Substitute θ = 30◦ + 90◦ = 120◦ to estimate σ120◦ and τ120◦ .
side a′ − b′: Substitute θ = 30◦ − 90◦ = −60◦ to estimate σ−60◦ and
τ−60◦ .



Torsion

Torsion of circular bars

For a circular solid and tubular sections with homogeneous elastic
material assume a plane section perpendicular to the axis remains
plane after the application of the torques (i.e., no warpage). Also,
assume the shear strains varies linearly with the distance from the
center of the axis. The shear strain at the end of the bar is

γ =
ρφ

L
=

ρ

c
γmax

Using Hooke’s law for shear stress, τ = Gγ

τ =
ρ

c
τmax

Figure 32: Shear strain.

The torsion formula can be obtained by equating the external
torque to the sum of moments developed in the cross-section.∫

A

(ρ

c
τmaxdA

)
ρ = T

τmax

c

∫
A

ρ2dA = T

τmax =
Tc
J

where J =
∫

A ρ2dA = is the polar moment of inertia of the circular
cross-sectional area.

J =
πc4

2
for circular sections

J =
πc4

2
2
−

πc4
1

2
for hollow sections

For shear stress at a distance of ρ

τ =
ρ

c
τmax =

Tρ

J



Some sample shear stress distributions in a circular, hollow, and
compound tube are shown in the below figure.

Figure 33: Sample shear stress distribu-
tions.

Angle of twist

In the elastic range, using the Hooke’s law

γmax =
τmax

G

⇒ cφ

L
=

Tc
GJ

φ =
TL
GJ

For circular bar with varying cross-section

φ = ∑
i

TiLi
Gi Ji

φ =
∫ L

0

Tdx
GJ

Problem 1.

Determine the shear stress developed in the shaft AB and BC.

Figure 34: Problem 1.

Shaft AB:

Take a section a− a′ and apply equation of equilibrium

∑ Mx = 0

⇒ − TAB + 10 kNm = 0

⇒ TAB = 10 kNm



Shaft BC:

Take a section b− b′ and apply equation of equilibrium

∑ Mx = 0

⇒ − TBC + 10 kNm− 4 kNm = 0

⇒ TBC = 6 kNm

Shear stress:

If the shaft AB is solid with a diameter of 80 mm

J =
πc4

2
=

π × (0.04 m)4

2
= 4.02× 10−6 m4

In the cross-section, we have two points D and E. At point D,

τD =
Tc
J

=
(10× 103 Nm) · (0.04 m)

4.02× 10−6 m4 = 99.4× 106 Pa = 99.4 MPa

At point E,

τE =
Tρ

J
=

(10× 103 Nm) · (0.03 m)

4.02× 10−6 m4 = 74.6× 106 Pa = 74.6 MPa

If the shaft BC is hollow with inner diameter 60 mm and outer
diameter 100 mm determine the minimum and maximum stress
developed in the shaft BC.

For this shaft BC

J =
π(c4

2 − c4
1)

2
=

π × [(0.05 m)4 − (0.03 m)4]

2
= 8.55× 10−6 m4

τmax =
TBCc2

J
=

(6× 103 Nm) · (0.05 m)

8.55× 10−6 m4 = 35.1× 106 Pa = 35.1 MPa

τmin =
TBCc1

J
=

c1

c2
τmax =

0.03 m
0.05 m

× 35.1 MPa = 21.06 MPa

If the shaft BC has an inner core made of a different material
(Gc = 2Go) determine the maximum stress developed in them.

With an inner core the problem becomes statically indeterminate.
Let us assume To and Tc are the torsional load carried by the outer
layer and the inner core, respectively. The equation of equilibrium
here,

To + Tc = TBC = 6 kNm

The compatibility equation to be used here

φB,c = φB,o

⇒ TcL
Gc Jc

=
ToL
Go Jo

⇒ Tc =

(
Gc

Go

)
·
(

Jc

Jo

)
· To

Tc = 2×
π
2 × (0.03 m)4

π
2 [(0.05 m)4 − (0.03 m)4]

× To ≈ 0.3To



Hence, To = 6 kNm/1.3 = 4.615 kNm and Tc = 1.385 kNm.
Maximum shear stress

τmax,c =
Tcc1

Jc
=

(1.385× 103 Nm) · (0.03 m)
π
2 × (0.03 m)4 = 32.66 MPa

τmax,o =
Toc2

Jo
=

(4.615× 103 Nm) · (0.05 m)
π
2 [(0.05 m)4 − (0.03 m)4]

= 27 MPa

τmin,o =
Toc1

Jo
=

(4.615× 103 Nm) · (0.03 m)
π
2 [(0.05 m)4 − (0.03 m)4]

= 16.2 MPa

Problem 2.

Determine the shear stress in AB and rotation at end D.

Figure 35: Problem 2.

Using the free-body diagram for shaft CD as shown

∑ Mx = 0

⇒ FCrC = 1 kNm = 1000 Nm

⇒ FC =
1000 Nm

0.1 m
= 10, 000 N

Using free-body diagram of shaft AB, FC = FB

∑ Mx = 0

⇒ FBrB = TA

⇒ TA = (10, 000 N) · (0.2 m) = 2000 Nm



Figure 36: Problem 2: Free-body
diagrams.

For this shaft AB, TAB = TA = 2000 Nm and

J =
π(c4

2 − c4
1)

2
=

π × [(0.05 m)4 − (0.03 m)4]

2
= 8.55× 10−6 m4

τmax =
TABc2

J
=

(2000 Nm) · (0.05 m)

8.55× 10−6 m4 = 11.7× 106 Pa = 11.7 MPa

τmin =
TABc1

J
=

c1

c2
τmax =

0.03 m
0.05 m

× 11.7 MPa = 7.02 MPa

The rotation at B

φB =
TABLAB

GJAB
=

(2000 Nm)× (1 m)

(80× 109 N/m2)× (8.55× 10−6 m4)
= 0.0029 rad

From the Figure 37

Figure 37: Problem 2: Rotation of both
wheels.

φB · (0.2 m) = φC · (0.1 m)

⇒ φC = 2φB = 0.0058 rad

⇒ φD = φC +
TCDLCD

GJCD
= 0.0058 +

(1000 Nm)× (2 m)

(80× 109 N/m2)× (4.02× 10−6m4)
= 0.012 rad



Problem 3.

Determine the deformation at the end A for the shaft shown below.
Assume G = 80 GPa and the radius of the shaft for the portion AD is
30 mm and for the portion DF is 60 mm.

Figure 38: Problem 3.

Using equation of equilibrium,

∑ Mx= 0

TAB = 0, TBC = 10 kNm, TCD = 20 kNm,

TDE = 20 kNm, TEF = 70 kNm.

The polar moments of inertia

JAB = JBC = JCD =
π

2
× (0.03 m)4 = 1.27× 10−6 m4

JDE = JEF =
π

2
× (0.06 m)4 = 20.36× 10−6 m4

The rotation at end F is φF = 0 and

φE =
TEFLEF

GJEF
, φD = φE +

TDELDE
GJDE

φC = φD +
TCDLCD

GJCD
, φB = φC +

TBCLBC
GJBC

φA = φB +
TABLAB

GJAB



Hence, the rotation at end A

φA = ∑
i

TiLi
GJi

=
TABLAB

GJAB
+

TBCLBC
GJBC

+
TCDLCD

GJCD
+

TDELDE
GJDE

+
TEFLEF

GJEF

= 0 +
(10000 Nm)× (0.1 m)

(80× 109 Pa)× (1.27× 10−6 m4)
+

(20000 Nm)× (0.1 m)

(80× 109 Pa)× (1.27× 10−6 m4)

+
(20000 Nm)× (0.25 m)

(80× 109 Pa)× (20.36× 10−6 m4)
+

(70000 Nm)× (0.25 m)

(80× 109 Pa)× (20.36× 10−6 m4)

= 43.29× 10−3 rad

Problem 4.

Design the stepped shaft in Problem 3 if the radius of the shaft
ABCD is half the radius of the shaft DEF, the allowable rotation at
end A is 30× 10−3 rad, and allowable shear stress in the shafts should
be less than 120 MPa.

Let us assume the radius of the shaft ABCD is c.

JAB = JBC = JCD =
π

2
c4

JDE = JEF =
π

2
(2c)4 = 8πc4

Hence,

φA = ∑
i

TiLi
GJi

=
TABLAB

GJAB
+

TBCLBC
GJBC

+
TCDLCD

GJCD
+

TDELDE
GJDE

+
TEFLEF

GJEF

= 0 +
(10000 Nm)× (0.1 m)

(80× 109 Pa)× (π/2× c4)
+

(20000 Nm)× (0.1 m)

(80× 109 Pa)× (π/2× c4)

+
(20000 Nm)× (0.25 m)

(80× 109 Pa)× (8πc4)
+

(70000 Nm)× (0.25 m)

(80× 109 Pa)× (8πc4)
< 30× 10−3

⇒ 1
c4 [636.62 + 1273.24 + 198.94 + 696.30] < (30× 10−3)× (80× 109)

⇒ 2805.1
c4 < 2.4× 109

⇒ c4 >
2805.1

2.4× 109 = 1.1688× 10−6 m4

⇒ c > 0.033 m = 33 mm

From the maximum shear stress in the shaft ABCD

τmax =
TCDc
JCD

=
(20000 Nm) · c

π/2c4 < 120 MPa

⇒ 12732.4
c3 Pa < 120× 106 Pa

⇒ c > 47.34 mm



From the maximum shear stress in the shaft DEF

τmax =
TEF(2c)

JEF
=

(70000 Nm) · (2c)
8πc4 < 120 MPa

⇒ 5570.4
c3 Pa < 120× 106 Pa

⇒ c > 35.94 mm

Choose the maximum of these: c ≈ 48 mm and 2c ≈ 96 mm.

Problem 5.

Determine the support reactions TA and TF if the end A is fixed in
Problem 3.

Assume the reaction TA is redundant and φL = rotation due the
external load, φR = rotation due to the reaction TA.

Figure 39: Problem 5.

From Problem 3,

φL = 43.29× 10−3 rad

φR = ∑
i

TiLi
GJi

= −TA

[ 0.3 m
(80× 109 Pa) · (1.27× 10−6 m4)

+
0.5 m

(80× 109 Pa) · (20.36× 10−6 m4)

]
= −(3.26× 10−6)TA

Using equation of compatibility

φL + φR = 0

⇒ 43.29× 10−3 − (3.26× 10−6)TA = 0

⇒ TA = 13279.1 Nm = 13.28 kNm

⇒ TF = 70 kNm− TA = 56.72 kNm

Power transfer

For a power transmission shaft

P = Tω = T · (2π f )

T =
P

2π f

where P is the power transmitted, f is the frequency of the transmis-
sion, and T is torque in the transmission shaft.



Problem 6.

Design the thickness of a transmission shaft with an outer radius of
20 mm to transmit a power of 50 kW at a frequency of 3000 rpm if
maximum allowable shear stress is 25 MPa.

Here, P = 50 kW = 50, 000 W = 50, 000 Nm/s,
f = 3000 rpm = 3000

60 Hz = 50 s−1. Hence,

T =
P

2π f
=

50, 000 Nm/s
2π × (50 s−1)

= 159.15 Nm

The outer radius c2 = 20 mm.
The polar moment of inertia J = π

2 (c
4
2 − c4

1) =
π
2
[
(0.02 m)4 − c4

1
]

The maximum shear stress developed

τmax =
Tc2

J
=

(159.15 Nm) · (0.02 m)
π
2
[
(0.02 m)4 − c4

1
] < 25 MPa

⇒ 2.0265 Nm2

(0.02 m)4 − c4
1
< 25× 106 Pa

⇒ 2.0265 Nm2

25× 106 Pa
< (0.02 m)4 − c4

1

⇒ c4
1 < (0.02 m)4 − 2.0265 Nm2

25× 106 Pa
⇒ c1 < 0.01676 m

⇒ c2 − c1 > 3.24 mm

Hence, a thickness of 4 mm is required for the transmission shaft.





Bending

Sign convention

The positive shear force and bending moments are as shown in the
figure.
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Figure 40: Sign convention followed.Centroid of an area

If the area can be divided into n parts then the distance Ȳ of the
centroid from a point can be calculated using

Ȳ =
∑n

i=1 Ai ȳi

∑n
i=1 Ai

where Ai = area of the ith part, ȳi = distance of the centroid of the ith
part from that point.

Second moment of area, or moment of inertia of area, or area
moment of inertia, or second area moment

For a rectangular section, moments of inertia of the cross-sectional
area about axes x and y are

Scanned by CamScanner

Figure 41: A rectangular section.

Ix =
1

12
bh3

Iy =
1

12
hb3

Parallel axis theorem

This theorem is useful for calculating the moment of inertia about an
axis parallel to either x or y. For example, we can use this theorem to
calculate Ix′ .



Ix′ = Ix + Ad2

Bending stress

Bending stress at any point in the cross-section is

σ = −My
I

where y is the perpendicular distance to the point from the centroidal
axis and it is assumed +ve above the axis and -ve below the axis. This
will result in +ve sign for bending tensile (T) stress and -ve sign for
bending compressive (C) stress.

Largest normal stress

Largest normal stress

σm =
|M|max · c

I
=
|M|max

S

where S = section modulus for the beam.
For a rectangular section, the moment of inertia of the cross-

sectional area I = 1
12 bh3, c = h/2, and S = I/c = 1

6 bh2.
We require σm ≤ σall (allowable stress)
This gives

Smin =
|M|max

σall

The radius of curvature

The radius of curvature ρ in the bending of a beam can be estimated
using

1
ρ
=

M
EI

Problem 1.

Draw the bending moment and shear force diagram of the following
beam.
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Figure 42: Problem 1.

Step I:

Solve for the reactions.

+→∑ Fx = 0 ⇒ Ax = 0

+ ↑∑ Fy = 0 ⇒ Ay + By −
1
2
· (1 kN/m) · (2 m)− (1 kN/m) · (2 m) = 0

⇒ Ay + By = 3 kN

+ x ∑ MA = 0 ⇒ − 1
2
· (1 kN/m) · (2 m) ·

(
4
3

m
)
− (1 kN/m) · (2 m) · (3 m) + By · (5 m)− (1.5 kN) · (6 m) = 0

⇒ By = 3.27 kN

⇒ Ay = 1.23 kN

Step II:

Use equations of equilibrium.

0 < x < 2 m :
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Figure 43: Free body diagram for
0 < x < 2 m.

+ ↑∑ Fy = 0

⇒ −V − 1
2
· (x/2) · (x) + 1.23 = 0

⇒ V = 1.23−
(

x2

4

)
V
∣∣∣
x=2 m

= 0.23 kN



Take moment about the right end of the section

+ x ∑ M = 0

⇒ M +

(
x2

4

)
·
( x

3

)
− 1.23x = 0

⇒ M = 1.23x− 0.083x3

M
∣∣∣
x=2 m

= 1.796 kNm

2 m < x < 4 m :
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Figure 44: Free body diagram for
2 m < x < 4 m.

+ ↑∑ Fy = 0

⇒ −V − (x− 2)− 1 + 1.23 = 0

⇒ V = 2.23− x

V
∣∣∣
x=4 m

= −1.77 kN

V = 0 at x = 2.23 m

Take moment about the right end of the section

+ x ∑ M = 0

⇒ M + 1 · (x− 2) ·
(

x− 2
2

)
+ 1 ·

(
x− 4

3

)
− 1.23x = 0

⇒ M = −0.67 + 2.23x− 0.5x2

M
∣∣∣
x=4 m

= 0.25 kNm

4 m < x < 5 m :
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Figure 45: Free body diagram for
4 m < x < 5 m.

+ ↑∑ Fy = 0

⇒ V − 1.5 + 3.27 = 0

⇒ V = −1.77

Take moment about the left end of the section

+ x ∑ M = 0

⇒ −M + (3.27) · (5− x)− (1.5) · (6− x) = 0

⇒ M = 7.35− 1.77x

M
∣∣∣
x=5 m

= −1.5 kNm
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Figure 46: Free body diagram for
5 m < x < 6 m.

5 m < x < 6 m :

+ ↑∑ Fy = 0

⇒ V = 1.5



Take moment about the left end of the section

+ x ∑ M = 0

⇒ −M− (1.5) · (6− x) = 0

⇒ M = 1.5x− 9

Note: V =
dM
dx

The BMD and SFD are drawn next.
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Figure 47: Bending moment and shear
force diagrams.



Note: Maximum bending moment occurs at x∗ where

dM
dx

∣∣∣
x=x∗

= 0

V = 0

2.23− x∗ = 0

x∗ = 2.23 m

Problem 2.

(a) Draw the bending moment and shear force diagram of the follow-
ing beam.
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Figure 48: Problem 2.

Step I:

Solve for the support reactions.

+→∑ Fx = 0 ⇒ Ax = 0

+ ↑∑ Fy = 0 ⇒ Ay + By = 4 kN

+ x ∑ MA = 0 ⇒ − (4 kN) · (1 m) + 2.8 kNm + By · (3 m) = 0

⇒ By = 0.4 kN

⇒ Ay = 3.6 kN

Step II:

Use equations of equilibrium.



0 < x < 1 m :
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Figure 49: Free body diagram for
0 < x < 1 m.

+ ↑∑ Fy = 0

⇒ V = 3.6

Take moment about the right end of the section

+ x ∑ M = 0

⇒ M− (3.6) · x = 0

⇒ M = 3.6x

M
∣∣∣
x=1 m−∆x

= 3.6 kNm

1 m < x < 2 m :
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Figure 50: Free body diagram for
1 m < x < 2 m.

+ ↑∑ Fy = 0

⇒ −V − 4 + 3.6 = 0

⇒ V = −0.4

Take moment about the right end of the section

+ x ∑ M = 0

⇒ M + 4 · (x− 1)− (3.6) · x = 0

⇒ M = 4− 0.4x

M
∣∣∣
x=1 m+∆x

= 3.6 kNm

M
∣∣∣
x=2 m−∆x

= 3.2 kNm

2 m < x < 3 m :
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Figure 51: Free body diagram for
2 m < x < 3 m.

+ ↑∑ Fy = 0

⇒ V = −0.4

Take moment about the left end of teh section

+ x ∑ M = 0

⇒ M = 0.4(3− x)

M
∣∣∣
x=2 m+∆x

= 0.4 kNm

(b) Check the required section for this beam with σall = 25 MPa.
Here, |M|max = 3.6 kNm.

Smin =
|M|max

σall
=

3.6× 103 Nm
25× 106 N/m2

= 1.44× 10−4m3

= 144× 103 mm3
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Figure 52: Bending moment and shear
force diagrams.

Hence, for a rectangular section

S =
1
6

bh2 =
1
6
· (40 mm) · h2

For this beam,

1
6
· (40 mm) · h2 = 144× 103 mm3

h2 = 21600 mm2

h = 146.97 mm

Let’s take h = 150 mm.
To design a standard angle section, we can use L 203× 203× 19

(lightest) with S = 200× 103 mm3 @ 57.9 kg/m.

Shape S(103 mm3)

L 203× 203× 25.4 259

L 203× 203× 19 200

L 203× 203× 12.7 137

Problem 3.

Calculate the moment of inertia of the T section with cross-sectional
area shown below about the centroidal axis x′.

Ai (mm2) ȳi (mm) Ai ȳi (mm3)
1 2× 103

75 225× 103

2 3× 103
160 320× 103

Σ 5× 103 545× 103
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Figure 53: Problem 3 (Method I).

Hence, the distance to the centroidal axis from the bottom of the
section is

Ȳ =
∑ Ai ȳi

∑ Ai
=

545× 103 mm3

5× 103 mm2

= 109 mm

Method I:

Using the parallel axes theorem,

I1 =
1
12

bh3 + Ad2

=
1

12
· (0.1 m) · (0.02 m)3 + (0.1 m) · (0.02 m) · (0.051 m)2

= 5.27× 10−6 m4

I2 =
1

12
bh3 + Ad2

=
1
12
· (0.02 m) · (0.15 m)3 + (0.02 m) · (0.15 m) · (0.034 m)2

= 9.09× 10−6 m4

Hence, the moment of inertia of the T section with cross-sectional
area about the centroidal axis x′

Ix′ = I1 + I2

= 14.36× 10−6 m4



Method II:
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Figure 54: Method II.

Using the parallel axes theorem, for the overall rectangular section

Io =
1
12

bh3 + Ad2

=
1

12
· (0.1 m) · (0.17 m)3 + (0.1 m) · (0.17 m) · (0.024 m)2

= 50.73× 10−6 m4

I1′ = I2′ =
1
12

bh3 + Ad2

=
1
12
· (0.04 m) · (0.15 m)3 + (0.04 m) · (0.15 m) · (0.034 m)2

= 18.19× 10−6 m4

Hence, the moment of inertia of the T section with cross-sectional
area about the centroidal axis x′

Ix′ = Io − I1′ − I2′

= 14.36× 10−6 m4

(b) If this section is subjected to 5 kNm bending moment estimate
the bending stresses at the top and at the bottom fibers.

Here, M = 5 kNm. Hence,

σtop = −
Mytop

Ix′
= − (5× 103 Nm) · (0.061 m)

14.36× 10−6 m4

= −21.24 MPa = 21.24 MPa (C)



σbot = −
Mybot

Ix′
= − (5× 103 Nm) · (−0.109 m)

14.36× 10−6 m4

= 37.95 MPa (T)

Problem 4.

For an angular section shown below estimate the moment of inertia
about the centroidal axis x.
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Figure 55: Problem 4 (Method I).

Method I:

Using the parallel axes theorem,

I1 = I3 =
1
12

bh3 + Ad2

=
1

12
· (0.1 m) · (0.02 m)3 + (0.1 m) · (0.02 m) · (0.065 m)2

= 8.52× 10−6 m4

I2 =
1
12

bh3

=
1
12
· (0.02 m) · (0.11 m)3

= 2.22× 10−6 m4

Hence, the moment of inertia of the angle section with cross-
sectional area about the centroidal axis x

Ix = I1 + I2 + I3

= 19.25× 10−6 m4



Method II:

Scanned by CamScanner

��	 ��ļ�
Figure 56: Method II.

For the overall rectangular section

Io =
1

12
bh3

=
1

12
· (0.1 m) · (0.15 m)3

= 28.13× 10−6 m4

I1′ =
1
12

bh3

=
1
12
· (0.08 m) · (0.11 m)3

= 8.87× 10−6 m4

Hence, the moment of inertia of the angle section with cross-
sectional area about the centroidal axis x

Ix = Io − I1′

= 19.25× 10−6 m4

Problem 5.

Calculate (a) maximum bending stress in the section, (b) bending
stress at point B in the section, and (c) the radius of curvature.

Using the parallel axes theorem,

I1 = I3 =
1

12
bh3 + Ad2

=
1

12
· (0.25 m) · (0.02 m)3 + (0.25 m) · (0.02 m) · (0.16 m)2

= 128.17× 10−6 m4

I2 =
1

12
bh3

=
1

12
· (0.02 m) · (0.3 m)3

= 45× 10−6 m4

Hence, moment of inertia of the cross-sectional area about the
centroidal axis x

Ix = I1 + I2 + I3

= 301.33× 10−6 m4

(a) Maximum bending stress

σm =
|M|max · c

Ix
= − (45× 103 Nm) · (0.17 m)

301.33× 10−6 m4

= 25.4 MPa
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Figure 57: Problem 5.

(b) Bending stress at B

σB = −MyB
Ix

= − (45× 103 Nm) · (0.15 m)

301.33× 10−6 m4

= −22.4 MPa = 22.4 MPa (C)

(c)

1
ρ
=

M
EIx

=
(45× 103 Nm)

(200× 109 Pa) · (301.33× 10−6 m4)

= 7.47× 10−4 m−1

Hence, the radius of curvature

ρ = 1339 m

(d) If a rolled steel section W 200× 86 is used then we have

Ix = 94.9× 106 m4 = 94.9× 10−6 m4, c = 0.111 m, yB = −(0.111− 0.0206) m = −0.0904 m

Maximum bending stress

σm =
|M|max · c

Ix
=

(45× 103 Nm) · (0.111 m)

94.9× 10−6 m4

= 52.63 MPa



Bending stress at B

σB = −MyB
Ix

= − (45× 103 Nm) · (−0.0904 m)

94.9× 10−6 m4

= 42.87 MPa (T)

1
ρ
=

M
EIx

= 2.37× 10−3 m−1

The radius of curvature
ρ = 421.8 m

Composite beams

The section of the beam consists of material 1 with elastic modulus E1

and material 2 with elastic modulus E2.

Scanned by CamScanner

Figure 58: Composite beam section.

Step I

Assume material 1 (generally the with smaller E1) as reference mate-
rial.

Define n1 = E1
E1

= 1, n2 = E2
E1

.

Step II

Estimate the position of the neutral axis Ȳ using

Ȳ =
∑i ni Ai ȳi

∑i ni Ai

Step III

Calculate the moment of inertia of the cross-sectional area about the
neutral axis (NA)

Ix = ∑
i

1
12

nibih3
i + ni Aid2

i

Essentially the cross-sectional area is transformed into section
shown here made up of only the reference material.
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Figure 59: Transformed beam section.

Step IV

Calculate the stress developed

σ = −ni My
Ix



The radius of curvature is given by

1
ρ
=

M
E1 Ix

where E1 is the elastic modulus of the reference material.

Problem 6.

For the section shown here made of wood (E1 = 16 GPa) and steel
(E2 = 200 GPa) calculate the bending stress at B and C when sub-
jected to a moment of 1.5 kNm.
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Figure 60: Problem 6.

Step I

Assume wood with E1 = 10 GPa as reference material.
Define n1 = E1

E1
= 1, n2 = E2

E1
= 200/16 = 12.5.

Step II

The distance is measured from bottom of the beam

ni Ai (mm2) ȳi (mm) ni Ai ȳi (mm3)
1 20× 103

120 2400× 103

2 12.5× 103
10 125× 103

Σ 32.5× 103 2525× 103
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Figure 61: Problem 6 (transformed
section).

Estimate the position of the neutral axis Ȳ using

Ȳ =
∑i ni Ai ȳi

∑i ni Ai
= 77.7 mm

Step III

Moment of inertia of the cross-sectional area of the wood about the
neutral axis (NA)

I1=
1

12
n1b1h3

1 + n1 A1d2
1

=
1

12
· (1) · (0.1 m) · (0.2 m)3 + (1) · (20× 10−3 m2) · (0.120 m− 0.0777 m)2

= 102.5× 10−6 m4

Moment of inertia of the cross-sectional area of the steel plate
about the neutral axis (NA)

I2=
1

12
n2b2h3

2 + n2 A2d2
2

=
1

12
· (12.5) · (0.05 m) · (0.02 m)3 + (12.5) · (1× 10−3 m2) · (0.015 m)2

= 57.7× 10−6 m4

Hence, the moment of inertia of this composite beam is

Ix = I1 + I2 = 160.2× 10−6 m4

Essentially the cross-sectional area is transformed into section
shown below made up of only the reference material (wood here).



Step IV

The stress developed at point B

σB= −
n1MyB

Ix

= − (1) · (1.5× 103 Nm) · (0.22 m− 0.077 m)

160.2× 10−6 m4

= −1.33 MPa = 1.33 MPa (C)

The stress developed at point C

σC= −
n2MyC

Ix

= − (12.5) · (1.5× 103 Nm) · (−0.077 m)

160.2× 10−6 m4

= 9.09 MPa (T)

The radius of curvature is given by

1
ρ
=

M
E1 Ix

=
1.5× 103 Nm

(16× 109 Pa) · (160.2× 10−6 m4)

= 0.585× 10−3 m−1

⇒ ρ = 1708.8 m

where E1 is the elastic modulus of the reference material (wood here).

Reinforced concrete sections

Reinforced concrete is made up of concrete and steel bars. Since
concrete can not take any tension and cracks appear in it only the
area of the concrete section above neutral axis and the steel bars
should be considered for the calculation of Ix.

Problem 7.

For the reinforced concrete section shown here (with 4 Re bars
@20mm dia.) calculate the bending stress in the concrete at B (the
top) and in the steel when subjected to a moment of 20 kNm. Use
20 GPa as the elastic modulus of concrete and 200 GPa as the elastic
modulus of steel.

Step I

Assume concrete with E1 = 20 GPa as reference material.
Define n1 = E1

E1
= 1, n2 = E2

E1
= 200/20 = 10.
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Figure 62: Problem 7.
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Figure 63: Problem 7 (transformed
section).

Step II

Assume the position of the neutral axis as shown in the figure. De-
note the distance from the bottom of the top flange to the neutral axis
to be x.

The distance is measured from the assumed neutral axis of the
beam

Material ni Ai (mm2) ȳi (mm) ni Ai ȳi (mm3)

Concrete
1 20000 20 + x 20000(20 + x)
2 200x x

2 100x2

Steel 3
(10) · (4 · π

4 · (20)2) −(180− x) −12566(180− x)
= 12566

Σ
20000(20 + x) + 100x2

−12566(180− x)

The position of the actual neutral axis Ȳ from our assumed one is

Ȳ =
∑i ni Ai ȳi

∑i ni Ai



If our assumption of the neutral axis is true then

Ȳ = 0

⇒ ∑i ni Ai ȳi

∑i ni Ai
= 0

⇒ ∑
i

ni Ai ȳi = 0

⇒ 20000(20 + x) + 100x2 − 12566(180− x) = 0

⇒ x2 + 200(20 + x)− 125.66(180− x) = 0

⇒ x2 + 200x + 4000− 22619 + 125.66x = 0

⇒ x2 + 325.66x− 18619 = 0

⇒ x ≈ 50 mm

Step III

Moment of inertia of the cross-sectional area of the concrete parts
about the neutral axis (NA)

I1=
1

12
n1b1h3

1 + n1 A1d2
1

=
1
12
· (1) · (0.5 m) · (0.04 m)3 + (1) · (20× 10−3 m2) · (0.07 m)2

= 100.7× 10−6 m4

I2=
1
12

n1b2h3
2 + n1 A2d2

2

=
1

12
· (1) · (0.2 m) · (0.05 m)3 + (1) · (0.2 m× 0.05 m) ·

(
0.05

2
m
)2

= 8.3× 10−6 m4

Moment of inertia of the cross-sectional area of the steel about the
neutral axis (NA)

Is= n2 Asd2
s

= (10) · (4 · π

4
· (0.02 m)2) · (0.13 m)2

= 212.4× 10−6 m4

Note that we are ignoring the 1/12bh3 part for the transformed steel
section.

Hence, the moment of inertia of this composite beam is

Ix = I1 + I2 + Is = 321.4× 10−6 m4

Essentially the cross-sectional area is transformed into section
shown below made up of only the reference material.



Step IV

The stress developed at point B (i.e., the top fiber) in the concrete

σB= −
n1MyB

Ix

= − (1) · (20× 103 Nm) · (0.09 m)

321.4× 10−6 m4

= −5.6 MPa = 5.6 MPa (C)

This is the maximum compressive stress in the concrete.
The stress developed in the steel

σs= −
n2Mys

Ix

= − (10) · (20× 103 Nm) · (−0.13 m)

321.4× 10−6 m4

= 80.9 MPa (T)

The radius of curvature is given by

1
ρ
=

M
E1 Ix

=
20× 103 Nm

(20× 109 Pa) · (321.4× 10−6 m4)

= 3.111× 10−3 m−1

⇒ ρ = 321.4 m

where E1 is the elastic modulus of the reference material (concrete
here).

Problem 8.

For the reinforced concrete section shown here (with 4 Re bars
@20mm dia.) calculate the bending stress at B and C when sub-
jected to a moment of 20 kNm. Use 20 GPa as the elastic modulus of
concrete and 200 GPa as the elastic modulus of steel.

Step I

Assume concrete with E1 = 20 GPa as reference material.
Define n1 = E1

E1
= 1, n2 = E2

E1
= 200/20 = 10.

Step II

Assume the position of the neutral axis as shown in the figure. De-
note the distance from the bottom of the top flange to the neutral axis
to be x.
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Figure 64: Problem 8.

The distance is measured from the assumed neutral axis of the
beam

Material ni Ai (mm2) ȳi (mm) ni Ai ȳi (mm3)
Concrete 1 400x x

2 200x2

Steel 2

(10) · (4 · π
4 · (20)2) −(570− x) −12566(570− x)

= 12566
Σ 200x2 − 12566(570− x)

The position of the actual neutral axis Ȳ from our assumed one is

Ȳ =
∑i ni Ai ȳi

∑i ni Ai

If our assumption of the neutral axis is true then

Ȳ = 0

⇒ ∑i ni Ai ȳi

∑i ni Ai
= 0

⇒ ∑
i

ni Ai ȳi = 0

⇒ 200x2 − 12566(570− x) = 0

⇒ x2 + 62.83x− 35813 = 0

⇒ x ≈ 160 mm

Step III

Moment of inertia of the cross-sectional area of the concrete parts
about the neutral axis (NA)

Ic=
1

12
n1b1h3

1 + n1 A1d2
1

=
1

12
· (1) · (0.4 m) · (0.16 m)3 + (1) · (0.4 m× 0.16 m) ·

(
0.16 m

2

)2

= 546× 10−6 m4



Moment of inertia of the cross-sectional area of the steel about the
neutral axis (NA)

Is= n2 Asd2
s

= (10) · (4 · π

4
· (0.02 m)2) · (0.41 m)2

= 2112× 10−6 m4

Note that we are ignoring the 1/12bh3 part for the transformed steel
section.

Hence, the moment of inertia of this composite beam is

Ix = Ic + Is = 2658× 10−6 m4

Essentially the cross-sectional area is transformed into section
shown below made up of only the reference material.

Step IV

The stress developed at point B (i.e., the top fiber) in the concrete

σB= −
n1MyB

Ix

= − (1) · (20× 103 Nm) · (0.16 m)

2658× 10−6 m4

= −1.2 MPa = 1.2 MPa (C)

This is the maximum compressive stress in the concrete.
The stress developed in the steel

σs= −
n2Mys

Ix

= − (10) · (20× 103 Nm) · (−0.41 m)

2658× 10−6 m4

= 30.85 MPa (T)

The radius of curvature is given by

1
ρ
=

M
E1 Ix

=
20× 103 Nm

(20× 109 Pa) · (2658× 10−6 m4)

= 0.376× 10−3 m−1

⇒ ρ = 2658 m

where E1 is the elastic modulus of the reference material (concrete
here).



Shearing

Due to the presence of the shear force in the beam and the fact that
τxy = τyx, a horizontal shear force exists in the beam that tend to
force the beam fibers to slide.

Horizontal Shear in Beams

The horizontal shear per unit length is given by

q =
VQ

I

where V = the shear force at that section; Q = the first moment of
the portion of the area (above the horizontal line where the shear is
being calculated) about the neutral axis; and I = moment of inertia of
the cross-sectional area of the beam. The quantity q is also known as
the shear flow.

Average Shear Stress Across the Width

Average shear stress across the width is defined as

τave =
VQ
It

where t = width of the section at that horizontal line. For a narrow
rectangular beam with t = b ≤ h/4, the shear stress varies across the
width by less than 80% of τave.

Maximum Transverse Shear Stress

For a narrow rectangular section we can work with the equation
τ = VQ

It to calculate shear stress at any vertical point in the cross
section. Hence, the shear stress at a distance y from the neutral axis

Q =

[
b ·
(

h
2
− y
)]
·
(

y +
h/2− y

2

)
=

b
2
·
(

h2

4
− y2

)



A = bh

I =
1

12
bh3

τxy = τyx =
VQ
Ib

=
V · b

2 ·
(

h2

4 − y2
)

1
12 bh3 · b

=
3V(h2 − 4y2)

2bh3

=
3V
2A
·
(

1− 4y2

h2

)
OR τxy = τyx =

V
2I
·
(

h2

4
− y2

)
—- a parabolic distribution of stress.

Hence, the maximum stress in a rectangular beam section is at
y = 0 and

τmax =
3V
2A

In case of a wide flanged beam like the one shown here the maxi-
mum shear stress is at the web and can be approximated as

τmax =
V

Aweb

Problem 1.

(a) Using the wooden T section as shown below and used in the
previous classes find the maximum shear it can take where the nails
have a capacity of 400 N against shear loads and the spacing between
the nails is 50 mm.

Using the parallel axes theorem,

I1 =
1
12

bh3 + Ad2

=
1

12
· (0.1 m) · (0.02 m)3 + (0.1 m) · (0.02 m) · (0.051 m)2

= 5.27× 10−6 m4

I2 =
1

12
bh3 + Ad2

=
1
12
· (0.02 m) · (0.15 m)3 + (0.02 m) · (0.15 m) · (0.034 m)2

= 9.09× 10−6 m4
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Figure 65: Problem 1: cross-section.

Hence, the moment of inertia of the T section about the centroidal
axis x′

I = I1 + I2

= 14.36× 10−6 m4

Figure 66: Problem 1: spacing of nails.

The first moment of the cross-sectional area is

Q = A1ȳ1

= (0.1 m) · (0.02 m) · (0.051 m)

= 102× 10−6 m3



The nails have Fnail = 400 N. If qall is the allowable shear per unit
length and s is the spacing between the nails then

Fnail = qalls

⇒ qall =
Fnail

s
=

400 N
0.05 m

= 8× 103 N/m

Hence,

qall =
VmaxQ

I

⇒ Vmax =
qall I

Q
=

(8× 103 N/m) · (14.36× 10−6 m4)

102× 10−6 m3 = 1.126 kN

(b) If V = 1 kN and estimate the maximum shear stress.
Maximum shear stress occurs at the neutral axis

τmax =
VQ
It

=
(1× 103 N) · (119× 10−6 m3)

(14.36× 10−6 m4) · (0.02 m)
= 414.35 kPa

(c) Instead of two wooden planks as shown before if four wooden
planks, two horizontal nails, and a single vertical nail are used as
shown below. estimate the spacings required for the two horizontal
nails for V = 1 kN and Fnail = 400 N.

Figure 67: Problem 1: four planks are
used.

In this case, the shear at the joint of 1st and the 2nd part needs to
be estimated. For this

Q = A1ȳ1

= (0.05 m) · (0.02 m) · (0.051 m)

= 51× 10−6 m4



Now,

Fnail
s

= q =
VQ

I
=

(1× 103 N) · (51× 10−6 m3)

14.36× 10−6 m4 = 3551.5 N/m

⇒ s =
Fnail

q
=

400 N
3551.5 N/m

= 0.113 m

Hence, a spacing of 100 mm will be okay.

Problem 2.

(a) For the box section shown here estimate the nail spacing required
if V = 1 kN and Fnail = 400 N.

Figure 68: Problem 2.

I1 = I4 =
1

12
· (0.1 m) · (0.02 m)3 + (0.1 m) · (0.02 m) · (0.04 m)2

= 3.27× 10−6 m4

I2 = I3 =
1
12
· (0.02 m) · (0.06 m)3

= 0.36× 10−6 m4

The second moment of inertia of the cross-sectional area about the
neutral axis

I = I1 + I2 + I3 + I4

= 2× 3.27× 10−6 m4 + 2× 0.36× 10−6 m4

= 7.25× 10−6 m4

The first moment of the top part about the neutral axis is

Q = A1ȳ1

= (0.1 m) · (0.02 m) · (0.04 m) = 80× 10−6 m3

The shear flow here

2Fnail
s

= q =
VQ

I

=
(1× 103 N) · (80× 10−6 m3)

7.25× 10−6 m4

⇒ 2× 400 N
s

= 11034.5 N/m

⇒ s = 0.0725 m

Hence, a spacing of 75 mm will be okay.
(b) Calculate the maximum shear stress developed.

Figure 69: Problem 2.

At the neutral axis

Q = 80× 10−6 m3 + 2 · (0.03 m) · (0.02 m) · (0.015 m)

= 98× 10−6 m3



Maximum shear stress

τ =
VQ
It

=
(1× 103 N) · (98× 10−6 m3)

(7.25× 10−6 m4) · (2× 0.02 m)

= 338 kPa

Problem 3.

Figure 70: Problem 3.

Design the beam as shown below for σall = 80 MPa and τall =

10 MPa. The depth of the beam is limited to 275 mm. Use standard
rolled steel section.

The shear force and bending moment diagrams are drawn first.
From the diagrams, |V|max = 20 kN and |M|max = 100 kNm.

Figure 71: Problem 3: SFD, BMD.

Design for bending stress

Hence, section modulus required

Sreqd =
|M|max

σall

=
100× 103 Nm

80× 106 Pa
= 1.25× 10−3 m3

= 1250× 103 mm3

Since the depth is limited choose W250×80 and add two 8 mm
thick plates at the top and bottom.

Total depth = 273 mm < 275 mm (okay).
The modified I section has a second moment of inertia about the

neutral axis

I = Ibeam + 2Iplate

= 126× 10−6 m4

+ 2 ·
[

1
12
· (0.254 m) · (0.008 m)3 + (0.254 m) · (0.008 m) · (0.1325 m)2

]
= 197.4× 10−6 m4

Figure 72: Problem 3: Modified I
section.

c = 136.5 mm

S =
I
c
= 1446× 10−6 m3 > Sreqd



Check for shear stress

A (mm2) ȳ (mm) Aȳ (mm3)
Plate 1 254× 8 132.5 269.24× 103

I-section
2 254× 15.6 120.7 478.26× 103

3 112.9× 9.4 56.45 59.91× 103

Σ 807.41× 103

Figure 73: Problem 3: Shear stress
calculation.

Q = ∑ Aȳ = 571.11× 103 mm3, t = 9.4 mm

Hence, maximum shear stress is

τmax =
|V|maxQ

It
=

(20× 103 N) · (807.41× 10−6 m3)

(197.4× 10−6 m4) · (0.0094 m)

= 8.7 MPa < τall (okay)

Problem 4.

(a) Calculate the stress in the bolt that connects steel plates and the
wooden block as shown if the section is subjected to V = 10 kN.
Assume the elastic moduli of steel as 200 GPa and of wood as 12.5
GPa. The bolt used has a diameter of 16 mm and a spacing of s = 100
mm is used.

Figure 74: Problem 4.

Take steel as the reference material. Hence,

E1 = 200 GPa, E2 = 12.5 GPa

n1 = 1, n2 =
E2

E1
=

1
16

The transformed section will be the following
The neutral axis will pass through the middle of the section.



Figure 75: Problem 4: The transformed
section.

The second moment of inertia of part 1 about the neutral axis,

I1 =
1
12

n1b1h3
1 + n1 A1d2

1

=
1

12
· (1) · (0.1 m) · (0.02 m)3 + (1) · (0.1 m) · (0.02 m) · (0.1 m)2

= 24.27× 10−6 m4

Similarly,

I2 =
1
12

n2b2h3
2

=
1

12
·
(

1
16

)
· (0.1 m) · (0.2 m)3

= 4.17× 10−6 m4

For the full section,

I = 2I1 + I2 = 52.7× 10−6 m4

Figure 76: Problem 4: The top steel
plate.

To get the stress in the bolt we need to calculate the shear force
at the bonded surface. Hence, we need the first moment of the steel
pate about the neutral axis

Q1 = n1 A1ȳ1

= (1) · (0.1 m) · (0.02 m) · (0.11 m)

= 220× 10−6 m3

The shear flow is

q =
VQ1

I

=
(10× 103 N) · (220× 10−6 m3)

52.7× 10−6 m4

= 41.75× 103 N/m



If the stress in the bolt is τb and the cross-sectional area of the bolt
is Ab we can write

τb Ab = Fbolt = qs

⇒ τb =
qs
Ab

=
qs

πd2
b/4

=
(41.75× 103 N/m) · (0.1 m)

π · (0.016 m)2/4

= 20.76 MPa

(b) Instead if allowable shear stress is τall = 10 MPa determine the
required spacing.

We have

sreqd =
τall Ab

q
= 0.0482 m

Hence, a spacing of 45 mm will be okay.

Problem 5.

Calculate the shear stress in the bonded surface if the section is
subjected to V = 10 kN. Assume the elastic moduli of steel as 210

GPa and of aluminum as 70 GPa.

Figure 77: Problem 5.

NOTE: In this problem, we need to know the centroid and the
second moment of inertia of a semi-circular area. Please see the
calculation at the end of this problem.

Take the aluminum with the semi-circular hole in it as the refer-
ence material. Hence,

E1 = 70 GPa, E2 = 210 GPa

n1 = 1, n2 =
E2

E1
= 3

Figure 78: Problem 5: The transformed
section.

Next, to locate its neutral axis

ni Ai (mm2) ȳi (mm) ni Ai ȳi (mm3)

Aluminum
1 (1) · (100× 100) 100 1000× 103

3
−(1) ·

(
π·(20)2

2

)
50 + 4×20

3π −36.75× 103

= −314.16 = 58.49
Steel 2 (3) · (100× 50) 25 375× 103

Σ 24371.7 1338.25× 103

The neutral axis is located at a distance Ȳ from the bottom where

Ȳ =
∑i ni Ai ȳi

∑i ni Ai
=

1338.25× 103

24371.7
≈ 55 mm



Figure 79: Problem 5: The position of
the NA.

Next, the calculate the second moment of inertia of the cross-
sectional area about the neutral axis. We will separately calculate for
1 , 2 , and 3 , first.

I1 =
1
12

n1b1h3
1 + n1 A1d2

1

=
1

12
· (1) · (0.1 m) · (0.1 m)3 + (1) · (0.1 m) · (0.1 m) · (0.045 m)2

= 28.583× 10−6 m4

I2 =
1

12
n2b2h3

2 + n2 A2d2
2

=
1
12
· (3) · (0.1 m) · (0.05 m)3 + (3) · (0.1 m) · (0.05 m) · (0.03 m)2

= 16.625× 10−6 m4

I3 =
1
12

n1

(
πr4

8

)
+ n1

(
πr2

2

)
d2

3

=
1

12
· (1) ·

(
π × (0.02 m)4

8

)
+ (1) ·

(
π × (0.02 m)2

2

)
· (0.005 m)2

= 0.021× 10−6 m4

Since Ix = πr4

8 about the axis that passes through the center as shown
in the figure. Detailed explanation is given at the end.

Hence,
I = I1 + I2 − I3 = 45.187× 10−6 m4

To estimate the the shear stress we need to calculate the first
moment Q of the cross-sectional area about the neutral axis and we
will use the bottom steel part to do it.

Q =Q2 = n2 A2ȳ2

= (3) · (0.1 m× 0.05 m) · (0.03 m)

= 450× 10−6 m3



Here, t = 100 mm− 40 mm = 60 mm = 0.06 m.
Hence, the shear stress at the bonded surface

τ =
VQ
It

=
(10× 103 N) · (450× 10−6 m3)

(45.187× 10−6 m4) · (0.06 m)

= 1.66 MPa

Centroid and second moment of inertia of a semi-circular area

Take a small area inside the semi-circular area as shown in the figure.
The area of this element is dA = (dρ) · (ρdθ) = ρdρdθ.

Figure 80: Semi-circular area.

The area of this semi-circular plate is A = πr2

2 .
Hence, if the distance to the centroid from the bottom is ȳ then

using the figure

Aȳ =
∫

A
ydA =

∫
A

ρ sin(θ)dA =
∫ r

0

∫ π

0
ρ sin(θ) · (ρdρdθ)

⇒
(

πr2

2

)
· ȳ =

∫ r

0

∫ π

0
(sin(θ)dθ) · (ρ2dρ)

=

[∫ π

0
sin(θ)dθ

]
·
[∫ r

0
ρ2dρ

]
= 2 · r3

3

⇒ ȳ =

(
2r3

3

)
·
(

2
πr2

)
=

4r
3π

The second moment of inertia of the semi-circular area about the x



axis

Ix =
∫

A
y2dA

=
∫

A
[ρ sin(θ)]2 dA

=
∫ r

0

∫ π

0
ρ2 sin2(θ) · (ρdρdθ)

=

[∫ π

0
sin2(θ)dθ

]
·
[∫ r

0
ρ3dρ

]
=
(π

2

)
·
(

r4

4

)
=

πr4

8



Transformation of Stress

τxy

σy

σx

τx′y′

σy′

σx′ θ

x′

x

θ

y′

y Figure 81: Transformation of Stress.

For a plane stress condition, i.e., σz = τxz = τyz = 0, if you
rotate the element shown here by an angle θ the equations for the
transformed stresses are

σx′ =
σx + σy

2
+

σx − σy

2
cos(2θ) + τxy sin(2θ)

τx′y′ = −
σx − σy

2
sin(2θ) + τxy cos(2θ)

σy′ =
σx + σy

2
−

σx − σy

2
cos(2θ)− τxy sin(2θ)

Note that, σx′ + σy′ = σx + σy.

Principal Stresses σmin

σmax θp

x′

x

θp

y′

y

Figure 82: Principal planes and stresses.

Principal stresses are the maximum normal stresses acting on the
principal planes if you rotate the element by θp. You can find θp



either by dσx′
dθ = 0 or by noting that on the principal planes you have

τx′y′ = 0.
Hence,

tan(2θp) =
2τxy

σx − σy

σmax,min =
σx + σy

2
±

√(
σx − σy

2

)2
+ τ2

xy

Note: Anticlockwise angles are positive and clockwise angles are
negative.

Maximum In-plane Shear Stress

τmax
σave

σave

θs = θp + 45◦

Figure 83: Maximum in-plane shear
stress.

Similarly, you can find maximum in-plane shear stress at an angle θs,
where

tan(2θs) = −
σx − σy

2τxy

τmax =

√(
σx − σy

2

)2
+ τ2

xy

Note: θp and θs are 45◦ apart.
Along with τmax, the normal stresses on all four planes are σave =

(σx + σy)/2.

Problem 1.

Calculate the normal stress and the shear stress acting on a plane
inclined at an angle 30

◦ to the x axis.

10 MPa

20 MPa

30 MPa

30◦

x

y Figure 84: Problem 1.

Method I:



10 MPa

20 MPa

30 MPa

30◦

σ τ

Stress:

A

A cos 30◦

A sin 30◦

30◦

Area:

10A cos 30◦
10A sin 30◦

20A cos 30◦

30A sin 30◦

30◦

σA τA

Force:

Figure 85: Problem 1: Calculation of
forces acting on the element.

Using the equations of equilibrium

∑ Fx′ = 0

⇒ σA− 20A cos 30◦ cos 30◦ − 10A cos 30◦ cos 60◦

− 10A sin 30◦ cos 30◦ + 30A sin 30◦ cos 60◦ = 0

⇒ σ = 16.16 MPa

∑ Fy′ = 0

⇒ τA− 20A cos 30◦ cos 60◦ + 10A cos 30◦ cos 30◦

− 10A sin 30◦ cos 60◦ − 30A sin 30◦ cos 30◦ = 0

⇒ τ = 16.65 MPa

Method II:
τx′y′

σy′

σx′ θ

x′

x

θ

y′

y

Figure 86: Problem 1: Transformed
stresses.

Here, we have

σx = −30 MPa

σy = 20 MPa

τxy = −10 MPa

σy′ =
σx + σy

2
−

σx − σy

2
cos(2θ)− τxy sin(2θ)

=
−30 + 20

2
− −30− 20

2
cos 60◦ − (−10) sin 60◦

= −5 + 25 cos 60◦ + 10 sin 60◦

= 16.16 MPa

10 MPa

20 MPa

30 MPa

30◦

σ y′
=

16.16 MPa

τ x′ y
′ =

16.65 MPa

τx′y′ = −
σx − σy

2
sin(2θ) + τxy cos(2θ)

= −−30− 20
2

sin 60◦ − 10 cos 60◦

= 25 sin 60◦ − 10 cos 60◦

= 16.65 MPa



Problem 2.

Calculate the normal stress and the shear stress acting on a plane
inclined at an angle 45

◦ to the y axis.

10 MPa

20 MPa

30 MPa45◦

x

y Figure 87: Problem 2.

Here, we have

σx = −30 MPa

σy = 20 MPa

τxy = −10 MPa

σx′ =
σx + σy

2
+

σx − σy

2
cos(2θ) + τxy sin(2θ)

=
−30 + 20

2
+
−30− 20

2
cos 90◦ + (−10) sin 90◦

= −5− 25 cos 90◦ − 10 sin 90◦

= −15 MPa

10 MPa

20 MPa

30 MPa

10 MPa25 MPa

15 MPa
45◦

Figure 88: Problem 2: Transformed
stresses.

τx′y′ = −
σx − σy

2
sin(2θ) + τxy cos(2θ)

= −−30− 20
2

sin 90◦ − 10 cos 90◦

= 25 sin 90◦ − 10 cos 90◦

= 25 MPa

Problem 3.

Consider an element at the top end of this rod.
(a) Calculate the principal stresses, maximum in-plane shear stress.
The top end of the rod is subjected to a torsion T = 5 kNm and a

bending moment M = (10 kN) · (0.5 m) = 5 kNm.



Figure 89: Problem 3.

The polar moment of inertia J and the second moment of inertia I
of the cross-sectional area

J =
π · c4

2
=

π · (0.075 m)4

2
= 49.7× 10−6 m4

I = Ix = Iy = J/2 =
π · c4

4
=

π · (0.075 m)4

4
= 24.85× 10−6 m4

Hence, in the element, we will have

τ =
Tc
J

=
(5× 103 Nm) · (0.075 m)

49.7× 10−6 m4 = 7.55 MPa

σ = −Mc
I

= − (5× 103 Nm) · (0.075 m)

24.85× 10−6 m4 = −15.1 MPa

7.55 MPa

15.1 MPa

Figure 90: Problem 3: The element.

The element is drawn next and we have

σx = −15.1 MPa

σy = 0

τxy = 7.55 MPa

Using the equations for the principal stresses

σmax,min =
σx + σy

2
±

√(
σx − σy

2

)2
+ τ2

xy

=
−15.1 + 0

2
±

√(
−15.1− 0

2

)2
+ (7.55)2

= −18.23 MPa, 3.13 MPa

The principal planes are located at an angle θp, where

tan(2θp) =
2τxy

σx − σy

=
2× 7.55
−15.1− 0

= −1

⇒ 2θp = −45◦, 135◦

⇒ θp = −22.5◦, 67.5◦



Maximum in-plane shear stress

τmax =

√(
σx − σy

2

)2
+ τ2

xy

=

√(
−15.1− 0

2

)2
+ (7.55)2

= 10.68 MPa

18.23 MPa

3.13 MPa

67.5◦

22.5◦

Figure 91: Problem 3: Principal stresses.

tan(2θs) = −
σx − σy

2τxy

= −−15.1− 0
2× 7.55

= 1

⇒ θs = 22.5◦

(b) Find maximum torsion the rod can be subjected to such that
τmax ≤ 15 MPa.

τxy

15.1 MPa

Figure 92: Problem 3 (b).

Using the equation for maximum in-plane shear stress

τmax =

√(
σx − σy

2

)2
+ τ2

xy ≤ 15 MPa

⇒ τ2
xy ≤ (15)2 − (7.55)2 = 168

⇒ τxy ≤ 12.96 MPa

Hence, the maximum torsion that can be applied

τxy =
Tc
J
≤ 12.96 MPa

Tmax =
J(12.96 MPa)

c
= 8.59 kNm



Mohr’s circle

τxy

σy

σx

σmin

σmax θp

x′

x

θp

y′

y

Principal stresses

τmax
σave

σave

θs = θp + 45◦

Maximum shear stress

τxy

+ve shear stress

σ

Figure 93: Stresses acting on an ele-
ment.



σ

τ

(σave, 0)

(σave,+τmax)

(σave,−τmax)

(σx,−τxy)

(σy,+τxy)

2θp

90◦

σmin

σmax

R =

√(
σx−σy

2

)2
+ τ2

xy
σave =

σx+σy
2

τmax = R =

√(
σx−σy

2

)2
+ τ2

xy

(σy, 0)

(σx, 0)

σx−σy
2

O

Figure 94: Mohr’s circle.

Problem 4.

Draw the Mohr’s circle for the element shown. X

Y

τ

Figure 95: Problem 4: The element.

Here, we have

σx = 0

σy = 0

τxy = +τ

σave =
σx + σy

2
= 0

Hence, the center of the circle is at (σave, 0) ≡ (0, 0). Also, consider



two points X and Y with coordinates

X : (0,−τ)

Y : (0, τ)

The center of the Mohr’s circle is at (0, 0) and the two points X
and Y are located on the circle as shown in the figure. The radius of
the circle is R = τ.

σ

τ

(0, 0)

(0,+τ)

Y

(0,−τ) X

(τ, 0)(−τ, 0)

90◦

τmax = R = τ

Figure 96: Problem 4: Mohr’s circle.

Hence, the principal stresses are

σmax = τ

σmin = −τ

They are shown in the next figure.



τ

τ

45◦

x′

x

45◦
y′

y

Principal stresses

The maximum in-plane shear stress, τmax = R = τ.

Problem 5.

Draw the Mohr’s circle for the element shown.
X

Y

σ

Figure 97: Problem 5: The element.

Here, we have

σx = σ

σy = 0

τxy = 0

σave =
σx + σy

2
=

σ + 0
2

=
σ

2

Hence, the center of the circle is at (σave, 0) ≡ (σ/2, 0). Also,
consider two points X and Y with coordinates

X : (σ, 0)

Y : (0, 0)

The center of the Mohr’s circle is at (σ/2, 0) and the two points X
and Y are located on the circle as shown in the figure. The radius of
the circle is R = σ/2.

Hence, the principal stresses are

σmax = σ

σmin = 0

The maximum in-plane shear stress, τmax = R = σ/2.



σ

τ

(σ/2, 0)

(σ/2, σ/2)

(σ/2,−σ/2)

(σ, 0)(0, 0)

90◦

XY

τmax = R = σ/2

O

Figure 98: Problem 5: Mohr’s circle.

Problem 6.

Solve Problem 3 using Mohr’s circle.
X

Y
7.55 MPa

15.1 MPa

Figure 99: Problem 3: The element.

Here, we have

σx = −15.1 MPa

σy = 0

τxy = +7.55 MPa

σave =
σx + σy

2
=
−15.1 + 0

2
MPa = −7.55 MPa

Hence, the center of the circle is at (σave, 0) ≡ (−7.55, 0). Also,
consider two points X and Y with coordinates

X : (−15.1,−7.55)

Y : (0, 7.55)



σ

(−7.55, 0)

(−7.55, 10.68)

(−7.55,−10.68)

(−15.1,−7.55)

135◦

45◦

45◦

Y

X

(−18.23, 0)

(3.13, 0)

R = 10.68
7.

55

τmax = R = 10.68

7.55

Figure 100: Problem 6: Mohr’s circle.

Using the (red) shaded right-angled triangle, the radius of the
Mohr’s circle

R2 = (7.55)2 + (7.55)2

⇒ R =
√
(7.55)2 + (7.55)2 = 10.68

Hence, the principal stresses are

σmax = σave + R = −7.55 + 10.68 = 3.13 MPa

σmin = σave − R = −7.55− 10.68 = −18.23 MPa

18.23 MPa

3.13 MPa

67.5◦

22.5◦

Figure 101: Problem 6: Principal
stresses.

The maximum in-plane shear stress, τmax = R = 10.68 MPa.



Problem 7.

Find maximum τxy such that τmax ≤ 15 MPa for the element shown.

τxy

15.1 MPa
X

Y

Figure 102: Problem 7.

σ

(−7.55, 0)

Y

X

(−22.55, 0)

(7.45, 0)

R = 15

τxy

7.55

R
=

15

Figure 103: Problem 7: Mohr’s circle.

Here, we have

σx = −15.1 MPa

σy = 0

τxy

σave =
σx + σy

2
=
−15.1 + 0

2
MPa = −7.55 MPa

Hence, the center of the circle is at (σave, 0) ≡ (−7.55, 0). Also,
consider two points X and Y with coordinates

X : (−15.1,−τxy)

Y : (0, τxy)

Given τmax = 15 MPa = R (maximum possible).
Using the shaded right-angled triangle

R2 = τ2
xy + (7.55)2

(15)2 = τ2
xy + (7.55)2

⇒ τxy = 12.96 MPa

Hence, maximum τxy = 12.96 MPa will give τmax = 15 MPa.



Problem 8.

Find maximum σ such that τmax ≤ 15 MPa for the element shown.

7.55 MPa

σ
X

Y

Figure 104: Problem 8.

(−σ/2, 0)

Y

X

R = 15

7.55

σ/2

R
=

15

Figure 105: Problem 8: Mohr’s circle.

Here, we have

σx = −σ

σy = 0

τxy = +7.55 MPa

σave =
σx + σy

2
=
−σ + 0

2
= −σ/2

Hence, the center of the circle is at (σave, 0) ≡ (−σ/2, 0). Also,
consider two points X and Y with coordinates

X : (−σ/2,−7.55)

Y : (0,−7.55)

Given τmax = 15 MPa = R (maximum possible).
Using the shaded right-angled triangle

R2 = (7.55)2 + (σ/2)2

(15)2 = (7.55)2 + (σ/2)2

⇒ σ/2 = 12.96 MPa

⇒ σ = 25.92 MPa

Hence, maximum σ = 25.92 MPa will give τmax = 15 MPa.



Deflection of Beams

Equation of the Elastic Curve

The governing second order differential equation for the elastic curve
of a beam deflection is

EI
d2y
dx2 = M

where EI is the flexural rigidity, M is the bending moment, and y is
the deflection of the beam (+ve upwards).

Boundary Conditions

Fixed at x = a:

Deflection is zero ⇒ y
∣∣∣
x=a

= 0

Slope is zero ⇒ dy
dx

∣∣∣
x=a

= 0

Simply supported at x = a:

Deflection is zero ⇒ y
∣∣∣
x=a

= 0

A fourth order differential equation can also be written as

EI
d4y
dx4 = −w

where is w is the distributed load.
Here, two more boundary conditions are needed in terms of

bending moment and shear force.



Boundary Conditions

Free at x = a:

Bending moment is zero ⇒ M = EI
d2y
dx2

∣∣∣∣∣
x=a

= 0

Shear force is zero ⇒ V = EI
d3y
dx3

∣∣∣∣∣
x=a

= 0

Simply supported at x = a:

Bending moment is zero ⇒ M = EI
d2y
dx2

∣∣∣∣∣
x=a

= 0

Notes on Integration

∫
(ax + b)dx =

∫
axdx +

∫
bdx + C1

=
ax2

2
+ bx + C1∫ ( ax2

2
+ bx + C1

)
dx =

∫ ax2

2
dx +

∫
bxdx +

∫
C1dx + C2

=
ax3

6
+

bx2

2
+ C1x + C2

Problem 1.

Calculate the tip deflection for the cantilever beam shown below.

L

P

Figure 106: Problem 1.

Bending moment

M = −Px



Hence,

EI
d2y
dx2 = M = −Px

EI
dy
dx

= −Px2

2
+ C1 [integrating with respect to x]

EIy = −Px3

6
+ C1x + C2 [integrating again with respect to x]

M

V

P

x

Figure 107: Problem 1: Free-body
diagram.

Use boundary condition dy/dx = 0 and y = 0 at x = L.

dy
dx

∣∣∣∣∣
x=L

= 0

⇒ C1 =
PL2

2

y

∣∣∣∣∣
x=L

= 0

⇒ − PL3

6
+ C1L + C2 = 0

⇒ C2 = −PL3

3

Hence, the equations of the deflection and slope becomes

y =
1

EI

(
−Px3

6
+

PL2x
2
− PL3

3

)
dy
dx

=
1

EI

(
−Px2

2
+

PL2

2

)
The tip deflection and the rotation

y

∣∣∣∣∣
x=0

= −PL3

3EI

dy
dx

∣∣∣∣∣
x=0

=
PL2

2EI

Problem 2.

Calculate the maximum deflection for the beam shown.
The support reactions are

Ay = By = P/2

0 ≤ x ≤ L/2:
Bending moment

M =
Px
2



P

ByAy

L

x

y

A B

Figure 108: Problem 2.

M

V

Ay = P/2

x

Figure 109: Problem 2: For 0 ≤ x ≤
L/2.

Hence,

EI
d2y
dx2 = M =

Px
2

EI
dy
dx

=
Px2

4
+ C1 [integrating with respect to x]

EIy =
Px3

12
+ C1x + C2 [integrating again with respect to x]

Use boundary condition y = 0 at x = 0.

C2 = 0

L/2 ≤ x ≤ L:
Bending moment

M =
P(L− x)

2

M

V

By = P/2

L− x

Figure 110: Problem 2: For L/2 ≤ x ≤
L.

Hence,

EI
d2y
dx2 = M =

P(L− x)
2

=
PL
2
− Px

2

EI
dy
dx

=
PLx

2
− Px2

4
+ C3 [integrating with respect to x]

EIy =
PLx2

4
− Px3

12
+ C3x + C4 [integrating again with respect to x]

Use boundary condition y = 0 at x = L.

0 =
PL3

4
− PL3

12
+ C3L + C4

C3L + C4 = −PL3

6

Now, use compatibility condition that deflections and slopes from
both these equations at x = L/2 should match.



Or, due to the symmetry of the problem slope at x = L/2 should
be zero, i.e., dy/dx = 0 at x = L/2. From the equation for the first
half of the beam

EI
dy
dx

∣∣∣∣∣
x=L/2

=
PL2

16
+ C1 = 0

⇒ C1 = −PL2

16

Similarly, from the equation for the second half of the beam

EI
dy
dx

∣∣∣∣∣
x=L/2

=
PL2

4
− PL2

16
+ C3 = 0

⇒ C3 = −3PL2

16

⇒ C4 = −PL3

6
− C3L =

PL3

48

Hence, the equations of the elastic curve

y =


1

EI

(
Px3

12 −
PL2x

16

)
for 0 ≤ x ≤ L/2

1
EI

(
− Px3

12 + PLx2

4 − 3PL2x
16 + PL3

48 for L/2 ≤ x ≤ L
)

Hence, maximum deflection at the midspan

y

∣∣∣∣∣
x=L/2

=
PL3

96EI
− PL3

32EI
= − PL3

48EI
[using the first equation]

⇒ |y|max =
PL3

48EI

Check: y

∣∣∣∣∣
x=L/2

= − PL3

96EI
+

PL3

16EI
− 3PL3

32EI
+

PL3

48EI
= − PL3

48EI
[using the second equation]

Slope at the left end

dy
dx

∣∣∣∣∣
x=0

= − PL2

16EI

Slope at the right end

dy
dx

∣∣∣∣∣
x=L

=
PL2

16EI

Problem 3.

Calculate the maximum deflection for the beam shown.



w0 = 5 KN/m

L = 10 m

x
A B

Figure 111: Problem 3.

We will convert all units to N and m. So, our y will be in m.
The vertical support reactions are Ay = By = w0L/2 = 25 kN.

Bending moment at a distance of x from left end

M = −(5000x) ·
( x

2

)
+ 25000x

= −2500x2 + 25000x

w0 = 5 KN/m

M

V

Ay = 25 kN

x/2

x

(5× 103) · x = 5000x N

Figure 112: Problem 3: Free-body
diagram.

Hence,

EI
d2y
dx2 = M = −2500x2 + 25000x

EI
dy
dx

= −2500x3

3
+ 12500x2 + C1 [integrating with respect to x]

EIy = −2500x4

12
+

12500x3

3
+ C1x + C2 [integrating again]

Use boundary conditions y = 0 at x = 0 and x = L = 10 m.

y

∣∣∣∣∣
x=0

= 0

⇒ C2 = 0

y

∣∣∣∣∣
x=10 m

= 0

⇒ − 2500 · (10)4

12
+

12500 · (10)3

3
+ C1 · (10) = 0

C1 = −208.33× 103

Hence, the equations of the elastic curve and the slope of the curve

y =
1

EI

(
−2500x4

12
+

12500x3

3
− (208.33× 103)x

)
dy
dx

=
1

EI

(
−2500x3

3
+ 12500x2 − 208.33× 103

)



Maximum deflection at the midspan

y

∣∣∣∣∣
x=5 m

= −651.04× 103

EI

⇒ |y|max =
651.04× 103

EI
=

5wL4

384EI

Problem 4.

Calculate the maximum deflection at the tip for the beam shown.
We will convert all units to N and m. So, our y will be in m.

w0 = 10 KN/m

L = 5 m

x

y

Figure 113: Problem 4.

Bending moment

M = −1000x2 · x
3
= −1000x3

3

w = w0x
L = 2x KN/m

M

V
x/3

x

1
2 (2x)x = x2 kN = 1000x2 N

Figure 114: Problem 4: Free-body
diagram.

Hence,

EI
d2y
dx2 = M = −1000x3

3

EI
dy
dx

= −250x4

3
+ C1 [integrating with respect to x]

EIy = −50x5

3
+ C1x + C2 [integrating again with respect to x]



Use boundary conditions dy/dx = 0 and y = 0 at x = L = 5 m.

dy
dx

∣∣∣∣∣
x=5 m

= 0

⇒ − 250 · (5)4

3
+ C1 = 0

⇒ C1 = 52.083× 103

y

∣∣∣∣∣
x=5 m

= 0

⇒ − 50 · (5)5

3
+ C1 · (5) + C2 = 0

C2 = −208.33× 103

Hence, the equations of the elastic curve and the slope of the curve

y =
1

EI

(
−50x5

3
+ (52.083× 103)x−−208.33× 103

)
dy
dx

=
1

EI

(
−250x4

3
+ 52.083× 103

)
Maximum deflection at the tip

y

∣∣∣∣∣
x=0

= −208.33× 103

EI

⇒ |y|max =
208.33× 103

EI
=

w0L4

30EI

Problem 5.

Estimate the deflection curve for the beam shown.

ByAy

w0

L

L/2

x

y

A B

Figure 115: Problem 5.



Using the equations for equilibrium

∑ Fy = 0

Ay + By =
1
2
· w0 ·

L
2
=

w0L
4

∑ MA = 0

By · L =
w0L

4
· L

3
=

w0L2

12

⇒ By =
w0L
12

⇒ Ay =
w0L

4
− w0L

12
=

w0L
6

0 ≤ x ≤ L/2:
Bending moment

M = −w0x2

L
· x

3
+

w0Lx
6

=
w0Lx

6
− w0x3

3L

w = 2w0x
L

M

V

Ay = w0 L
6

x/3

x

1
2

(
2w0x

L

)
x = w0x2

L

Figure 116: Problem 5: For 0 ≤ x ≤
L/2.

Hence,

EI
d2y
dx2 = M =

w0Lx
6
− w0x3

3L

EI
dy
dx

=
w0Lx2

12
− w0x4

12L
+ C1 [integrating with respect to x]

EIy =
w0Lx3

36
− w0x5

60L
+ C1x + C2 [integrating again]

L/2 ≤ x ≤ L:
Bending moment

M = −w0L
12

(L− x)

=
w0L2

12
− w0Lx

12

M

V

By = P/2

L− x

Figure 117: Problem 5: For L/2 ≤ x ≤
L.

Hence,

EI
d2y
dx2 = M =

w0L2

12
− w0Lx

12

EI
dy
dx

=
w0L2x

12
− w0Lx2

24
+ C3 [integrating with respect to x]

EIy =
w0L2x2

24
− w0Lx3

72
+ C3x + C4 [integrating again]



Use boundary conditions y = 0 at x = 0 and x = L.

y

∣∣∣∣∣
x=0

= 0

⇒ C2 = 0

y

∣∣∣∣∣
x=L

= 0

⇒ C3L + C4 = −w0L4

36

Next, use the compatibility condition that at x = L/2 deflection
and slope from both of these expressions should match.

EI

y

∣∣∣∣∣
x=L/2


expression 1

= EI

y

∣∣∣∣∣
x=L/2


expression 2

⇒ w0L
36
· L3

8
− w0

60L
· L5

32
+ C1 ·

L
2
=

w0L2

24
· L2

4
− w0L

72
· L3

8
+ C3 ·

L
2
+ C4

⇒ 17w0L4

5760
+

C1L
2

= −11w0L4

576
− C3L

2
[C4 = −w0L4

36
− C3L]

⇒ C1L
2

= −127w0L4

5760
− C3L

2

⇒ C1 + C3 = −127w0L3

2880

EI

 dy
dx

∣∣∣∣∣
x=L/2


expression 1

= EI

 dy
dx

∣∣∣∣∣
x=L/2


expression 2

⇒ w0L
12
· L2

4
− w0

12L
· ( L4

16
) + C1 =

w0L2

12
· L

2
− w0L

24
· L2

4
+ C3

⇒ w0L3

64
+ C1 =

w0L3

32
+ C3

⇒ C1 − C3 =
w0L3

64

Solving for C1 and C3 gives

C1 = −41w0L3

2880

C3 = −43w0L3

1440

⇒ C4 =
w0L4

480

Hence, the equations for the elastic curve

y =


1

EI

(
w0Lx3

36 − w0x5

60L −
41w0L3x

2880

)
for 0 ≤ x ≤ L/2

1
EI

(
w0L2x2

24 − w0Lx3

72 − 43w0L3x
1440 + w0L4

480

)
for L/2 ≤ x ≤ L



Method of Superposition

Method of superposition can be used if you have two or more loads
acting on the beam.

Problem 6.

Estimate the deflection of the beam as shown.

w0

L

x

P Figure 118: Problem 6.

Using method of superposition combine results from the following
two cases:

w0

L L/2

P Figure 119: Problem 6: Method of
superposition.

For the first case:

w0

L

Figure 120: Problem 6: Case I



We will use the fourth order governing differential equation.

EI
d4y
dx4 = −w = −w0

⇒ EI
d3y
dx3 = −w0x + C1

⇒ EI
d2y
dx2 = −w0x2

2
+ C1x + C2

⇒ EI
dy
dx

= −w0x3

6
+

C1x2

2
+ C2x + C3

⇒ EIy = −w0x4

24
+

C1x3

6
+

C2x2

2
+ C3x + C4

Use boundary conditions dy/dx = 0 and y = 0 at x = L and

bending moment M = EI d2y
dx2 = 0 at x = 0 and shear force V =

EI d3y
dx3 = 0 at x = 0.

V = EI
d3y
dx3

∣∣∣∣∣
x=0

= 0

⇒ C1 = 0

M = EI
d2y
dx2

∣∣∣∣∣
x=0

= 0

⇒ C2 = 0

dy
dx

∣∣∣∣∣
x=L

= 0

⇒ C3 =
w0L3

6

y

∣∣∣∣∣
x=L

= 0

⇒ − w0L4

24
+ C3L + C4 = 0

⇒ C4 =
w0L4

24
− w0L4

6
= −w0L4

8

Hence, for the first case

y =
1

EI

(
−w0x4

24
+

w0L3x
6
− w0L4

8

)
dy
dx

=
1

EI

(
−w0x3

6
+

w0L3

6

)



For the second case:

L/2

P

Figure 121: Problem 6: Case II

0 ≤ x ≤ L/2:
Bending moment M = 0. Hence,

EI
d2y
dx2 = M = 0

EI
dy
dx

= C1 [integrating with respect to x]

EIy = C1x + C2 [integrating again] M

V
x

Figure 122: Problem 6, Case II: For
0 ≤ x ≤ L/2.

L/2 ≤ x ≤ L:
Bending moment

M = −P(x− L/2)

Hence,

EI
d2y
dx2 = M = −Px +

PL
2

EI
dy
dx

= −Px2

2
+

PLx
2

+ C3 [integrating with respect to x]

EIy = −Px3

6
+

PLx2

4
+ C3x + C4 [integrating again]

M

V

P

L/2

x

Figure 123: Problem 6, Case II: For
L/2 ≤ x ≤ L.

Use boundary conditions dy/dx = 0 and y = 0 at x = L.

dy
dx

∣∣∣∣∣
x=L

= 0

⇒ − PL2

2
+

PL2

2
+ C3 = 0

⇒ C3 = 0

y

∣∣∣∣∣
x=L

= 0

⇒ − PL3

6
+

PL3

4
+ C4 = 0

⇒ C4 = −PL3

12

Next, use the compatibility condition that at x = L/2 the slope and



the deflection should match.

EI

 dy
dx

∣∣∣∣∣
x=L/2


expression 1

= EI

 dy
dx

∣∣∣∣∣
x=L/2


expression 2

⇒ C1 = −PL2

8
+

PL2

4
=

PL2

8

EI

y

∣∣∣∣∣
x=L/2


expression 1

= EI

y

∣∣∣∣∣
x=L/2


expression 2

⇒ C1L
2

+ C2 = −PL3

48
+

PL3

16
+ C4

⇒ C2 = −5PL3

48

Hence, for the second case, the equations for the elastic curve

y =


1

EI

(
PL2x

8 − 5PL3

48

)
for 0 ≤ x ≤ L/2

1
EI

(
− Px3

6 + PLx2

4 − PL3

12

)
for L/2 ≤ x ≤ L

Combining case I and II, the elastic curves for the original beam

y =


1

EI

(
−w0x4

24 + w0L3x
6 − w0L4

8 + PL2x
8 − 5PL3

48

)
for 0 ≤ x ≤ L/2

1
EI

(
−w0x4

24 + w0L3x
6 − w0L4

8 − Px3

6 + PLx2

4 − PL3

12

)
for L/2 ≤ x ≤ L

The tip deflection and rotation

y

∣∣∣∣∣
x=0

= −w0L4

8EI
− 5PL3

48

dy
dx

∣∣∣∣∣
x=0

=
w0L3

6EI
+

PL2

8EI

Statically Indeterminate Beams

Clever use of superposition can be utilized here.

Problem 7.

Calculate the support reaction Ay here.
Method I:
Let us use the method of superposition and divide the problem

into the following two cases.
From Problem 5, the deflection for the first case

y =
1

EI

(
−w0x4

24
+

w0L3x
6
− w0L4

8

)



w0

L

x
A B

Figure 124: Problem 7.

w0

Ay

Figure 125: Problem 7: Method of
superposition.

Hence, the tip deflection in this case

y

∣∣∣∣∣
x=0

= −w0L4

8EI

For the second case, use the result from Problem 1. The tip deflec-
tion in this case

y

∣∣∣∣∣
x=0

=
AyL3

3EI

However, due to the presence of the roller support at A, the deflec-
tion at A should be zero. This leads to

AyL3

3EI
− w0L4

8EI
= 0

Ay =
3w0L

8
Method II: Assume the unknown reaction at A as Ay and calculate

the bending moment as follows:

w0

M

V

Ay

x/2

x

w0x

Figure 126: Problem 7: Free-body
diagram.

Bending moment at a distance of x from left end

M = −(w0x) ·
( x

2

)
+ Ayx

= −w0x2

2
+ Ayx

Hence,

EI
d2y
dx2 = M = −w0x2

2
+ Ayx

EI
dy
dx

= −w0x3

6
+

Ayx2

2
+ C1 [integrating with respect to x]

EIy = −w0x4

24
+

Ayx3

6
+ C1x + C2 [integrating again]



Use boundary conditions y = 0 at x = 0 and dy/dx = 0, y = 0 at
x = L.

y

∣∣∣∣∣
x=0

= 0

C2 = 0

dy
dx

∣∣∣∣∣
x=L

= 0

⇒ − w0L3

6
+

AyL2

2
+ C1 = 0

⇒ C1 =
w0L3

6
−

AyL2

2

y

∣∣∣∣∣
x=L

= 0

⇒ − w0L4

24
+

AyL3

6
+ C1L + C2 = 0

⇒ − w0L4

24
+

AyL3

6
+

(
w0L4

6
−

AyL3

2

)
= 0

⇒ Ay =
3w0L

8

Problem 8.

Calculate the support reaction at A.

w0 = 10 KN/m

L = 5 m

x

y

A B

Figure 127: Problem 8.

Using method of superposition this problem can be divided into
two cases.

From Problem 4, the tip deflection for case I

y

∣∣∣∣∣
x=0

= −w0L4

30EI
= −208.33× 103

EI



w0

Ay

Figure 128: Problem 8: Method of
superposition.

From Problem 1, the tip deflection for case II

y

∣∣∣∣∣
x=0

=
AyL3

3EI
=

41.67Ay

EI

However, due to the presence of the roller support at A, the deflec-
tion at A should be zero. This leads to

41.67Ay

EI
− 208.33× 103

EI
= 0

Ay = 5000 N = 5 kN



Moment-Area Method

First moment-area theorem

Figure 129: Moment area theorem.

θD/C = area under M/EI diagram between C and D

θD − θC =
∫ xD

xC

M
EI

dx

Second moment-area theorem

Figure 130: Moment area theorem.

Tangential deviation tC/D of C with respect to D

tC/D = (area between C and D)x̄1

Tangential deviation tD/C of D with respect to C

tD/C = (area between C and D)x̄2

Problem 9.

Find the tip deflection and rotation of the beam.



Figure 131: Problem 9.

Step I: Draw the reference tangent

Figure 132: Problem 9: Reference
tangent.

Step II: Draw the M/EI diagram

Figure 133: Problem 9: M/EI diagram.

Step III: Use the first theorem

θB/A = A1 + A2

⇒ θB − 0 =

(
M
EI

)
·
(

L
2

)
+

(
M

2EI

)
·
(

L
2

)
⇒ θB =

3ML
4EI

Step IV: Use the second theorem

tB/A = A1 x̄1 + A2 x̄2

=

(
ML
2EI

)
·
(

L
4

)
+

(
ML
4EI

)
·
(

3L
4

)
=

ML2

8EI
+

3ML2

16EI

⇒ δB =
5ML2

16EI

Problem 10.

Find the tip deflection and rotation using moment-area theorems.



Figure 134: Problem 10.

Step I: Draw the reference tangent

Figure 135: Problem 10: Reference
tangent.

Step II: Draw the M/EI diagram

Figure 136: Problem 10: M/EI diagram.

Step III: Use the first theorem
To use the first theorem first divide the M/EI digram into 3 ele-



mentary areas A1, A2, and A3.

A1 =

(
−w0L2

8EI

)
·
(

L
2

)
= −w0L3

16EI

A2 =
1
2
·
(
−2w0L2

8EI

)
·
(

L
2

)
= −w0L3

16EI

A3 =
1
3
·
(
−w0L2

8EI

)
·
(

L
2

)
= −w0L3

48EI

Next, using the first theorem

θC/A = A1 + A2 + A3

⇒ θC − 0 = −7w0L3

48EI

⇒ θC =
7w0L3

48EI
(Clockwise)

Step IV: Use the second theorem
First, calculate the distances x̄1, x̄2, and x̄3.

x̄1 =
L
2
+

L
4

=
3L
4

x̄2 =
L
2
+

2
3
· L

2

=
5L
6

x̄3 =
L
2
− L

8

=
3L
8

Next, using the second theorem

tC/A = A1 x̄1 + A2 x̄2 + A3 x̄3

=

(
−w0L3

16EI

)
·
(

5L
6

)
+

(
−w0L3

16EI

)
·
(

3L
4

)
+

(
−w0L3

48EI

)
·
(

3L
8

)
= −41w0L3

384EI




